665 research outputs found

    Adolescent Victims\u27 Experiences With Cyberbullying: A Grounded Theory Study

    Get PDF
    The purpose of this study was to construct a Grounded Theory that explains the processes involved in cyberbullying from the perspectives of those who have been victimized. A Constructivist Grounded Theory approach was used to explain the processes that occur as cyberbullying begins, unfolds, and ends, as well as to determine the methods that adolescent victims use to cope, and the context in which cyberbullying occurs. Cyberbullying is a pervasive public health issue, affecting an estimated 10-30% of youth. Cyberbullying, though closely related to traditional physical bullying, has qualities that make it distinctive. Unlike traditional bullying, cyberbullying is relatively new in the literature and there are many elements of the phenomenon that we do not yet understand. One-on-one, semi-structured interviews were conducted with 15 adolescent victims of cyberbullying. As a result of those interviews, a Grounded Theory titled Emerging from Cyberbullying was constructed and a theoretical model was developed. From these findings, we see that the victim moves through various stages during his/her experience. From Being Targeted, the victim becomes enveloped into a cyberbullying cycle that includes Being Cyberbullied, Losing Oneself, and Attempting to Cope. When the cyberbullying ceases, or the victim is no longer affected actively affected by it, he/she moves into a stage of Resolving and finally, Finding Oneself. The findings from this study give hope that cyberbullying victims can arise from a cyberbullying experience feeling stronger and empowered to help others cope with cyberbullying victimization. Emerging from Cyberbullying gives us greater insight into the phenomenon of cyberbullying from the victims’ perspective and can be used to inform public health efforts aimed at preventing and intervening in cyberbullying behaviors

    Relativistic calculations of the isotope shifts in highly charged Li-like ions

    Full text link
    Relativistic calculations of the isotope shifts of energy levels in highly charged Li-like ions are performed. The nuclear recoil (mass shift) contributions are calculated by merging the perturbative and large-scale configuration-interaction Dirac-Fock-Sturm (CI-DFS) methods. The nuclear size (field shift) contributions are evaluated by the CI-DFS method including the electron-correlation, Breit, and QED corrections. The nuclear deformation and nuclear polarization corrections to the isotope shifts in Li-like neodymium, thorium, and uranium are also considered. The results of the calculations are compared with the theoretical values obtained with other methods.Comment: 28 page

    Isotope shifts of the 2p3/2p_{3/2}-2p1/2p_{1/2} transition in B-like ions

    Full text link
    Isotope shifts of the 2p3/2p_{3/2}-2p1/2p_{1/2} transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z=8-92. The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2p3/2p_{3/2}-2p1/2p_{1/2} transition in B-like ions is significantly improved.Comment: arXiv admin note: text overlap with arXiv:1410.707

    Dielectronic Recombination of Fe XV forming Fe XIV: Laboratory Measurements and Theoretical Calculations

    Get PDF
    We have measured resonance strengths and energies for dielectronic recombination (DR) of Mg-like Fe XV forming Al-like Fe XIV via N=3 -> N' = 3 core excitations in the electron-ion collision energy range 0-45 eV. All measurements were carried out using the heavy-ion Test Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We have also carried out new multiconfiguration Breit-Pauli (MCBP) calculations using the AUTOSTRUCTURE code. For electron-ion collision energies < 25 eV we find poor agreement between our experimental and theoretical resonance energies and strengths. From 25 to 42 eV we find good agreement between the two for resonance energies. But in this energy range the theoretical resonance strengths are ~ 31% larger than the experimental results. This is larger than our estimated total experimental uncertainty in this energy range of +/- 26% (at a 90% confidence level). Above 42 eV the difference in the shape between the calculated and measured 3s3p(^1P_1)nl DR series limit we attribute partly to the nl dependence of the detection probabilities of high Rydberg states in the experiment. We have used our measurements, supplemented by our AUTOSTRUCTURE calculations, to produce a Maxwellian-averaged 3 -> 3 DR rate coefficient for Fe XV forming Fe XIV. The resulting rate coefficient is estimated to be accurate to better than +/- 29% (at a 90% confidence level) for k_BT_e > 1 eV. At temperatures of k_BT_e ~ 2.5-15 eV, where Fe XV is predicted to form in photoionized plasmas, significant discrepancies are found between our experimentally-derived rate coefficient and previously published theoretical results. Our new MCBP plasma rate coefficient is 19-28% smaller than our experimental results over this temperature range

    Precision Spectroscopy at Heavy Ion Ring Accelerator SIS300

    Full text link
    Unique spectroscopic possibilities open up if a laser beam interacts with relativistic lithium-like ions stored in the heavy ion ring accelerator SIS300 at the future Facility for Antiproton and Ion Research FAIR in Darmstadt, Germany. At a relativistic factor gamma = 36 the 2P 1/2 level can be excited from the 2S 1/2 ground state for any element with frequency doubled dye-lasers in collinear geometry. Precise transition energy measurements can be performed if the fluorescence photons, boosted in forward direction into the X-ray region, are energetically analyzed with a single crystal monochromator. The hyperfine structure can be investigated at the 2P 1/2 - 2S 1/2 transition for all elements and at the 2P 3/2 - 2S 1/2 transition for elements with Z < 50. Isotope shifts and nuclear moments can be measured with unprecedented precision, in principle even for only a few stored radioactive species with known nuclear spin. A superior relative line width in the order of 5E-7 may be feasible after laser cooling, and even polarized external beams may be prepared by optical pumping

    Absolute rate coefficients for photorecombination of berylliumlike and boronlike silicon ions

    Get PDF
    We report measured rate coefficients for electron-ion recombination for Si10+ forming Si9+ and for Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ [Orban et al. 2010, Astrophys. J. 721, 1603] to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.Comment: 17 pages, 7 figures, 3 tables, 66 references, submitted to the J. Phys. B special issue on atomic and molecular data for astrophysicist

    Dielectronic Recombination in Photoionized Gas. II. Laboratory Measurements for Fe XVIII and Fe XIX

    Get PDF
    In photoionized gases with cosmic abundances, dielectronic recombination (DR) proceeds primarily via nlj --> nl'j' core excitations (Dn=0 DR). We have measured the resonance strengths and energies for Fe XVIII to Fe XVII and Fe XIX to Fe XVIII Dn=0 DR. Using our measurements, we have calculated the Fe XVIII and Fe XIX Dn=0 DR DR rate coefficients. Significant discrepancies exist between our inferred rates and those of published calculations. These calculations overestimate the DR rates by factors of ~2 or underestimate it by factors of ~2 to orders of magnitude, but none are in good agreement with our results. Almost all published DR rates for modeling cosmic plasmas are computed using the same theoretical techniques as the above-mentioned calculations. Hence, our measurements call into question all theoretical Dn=0 DR rates used for ionization balance calculations of cosmic plasmas. At temperatures where the Fe XVIII and Fe XIX fractional abundances are predicted to peak in photoionized gases of cosmic abundances, the theoretical rates underestimate the Fe XVIII DR rate by a factor of ~2 and overestimate the Fe XIX DR rate by a factor of ~1.6. We have carried out new multiconfiguration Dirac-Fock and multiconfiguration Breit-Pauli calculations which agree with our measured resonance strengths and rate coefficients to within typically better than <~30%. We provide a fit to our inferred rate coefficients for use in plasma modeling. Using our DR measurements, we infer a factor of ~2 error in the Fe XX through Fe XXIV Dn=0 DR rates. We investigate the effects of this estimated error for the well-known thermal instability of photoionized gas. We find that errors in these rates cannot remove the instability, but they do dramatically affect the range in parameter space over which it forms.Comment: To appear in ApJS, 44 pages with 13 figures, AASTeX with postsript figure

    Nuclear deformation effect on the binding energies in heavy ions

    Full text link
    Nuclear deformation effects on the binding energies in heavy ions are investigated. Approximate formulas for the nuclear-size correction and the isotope shift for deformed nuclei are derived. Combined with direct numerical evaluations, these formulas are employed to reanalyse experimental data on the nuclear-charge-distribution parameters in 238U^{238}\textrm{U} and to revise the nuclear-size corrections to the binding energies in H- and Li-like 238U^{238}\textrm{U}. As a result, the theoretical uncertainties for the ground-state Lamb shift in 238U91+^{238}\textrm{U}^{91+} and for the 2p1/22s2p_{1/2}-2s transition energy in 238U89+^{238}\textrm{U}^{89+} are significantly reduced. The isotope shift of the 2pj2s2p_{j}-2s transition energies for 142Nd57+^{142}\textrm{Nd}^{57+} and 150Nd57+^{150}\textrm{Nd}^{57+} is also evaluated including nuclear size and nuclear recoil effects within a full QED treatment.Comment: 19 pages, 5 table
    corecore