11 research outputs found

    Regret analysis of the Piyavskii-Shubert algorithm for global Lipschitz optimization

    Full text link
    We consider the problem of maximizing a non-concave Lipschitz multivariate function f over a compact domain. We provide regret guarantees (i.e., optimization error bounds) for a very natural algorithm originally designed by Piyavskii and Shubert in 1972. Our results hold in a general setting in which values of f can only be accessed approximately. In particular, they yield state-of-the-art regret bounds both when f is observed exactly and when evaluations are perturbed by an independent subgaussian noise

    Optimisation globale sous incertitude : algorithmes stochastiques et bandits continus avec application aux performances avion

    No full text
    Cette thèse est consacrée à l'étude théorique et numérique d'algorithmes d'optimisation stochastiques adaptés au traitement du problème de planification des trajectoires d'avions en environnement incertain. L'optimisation des temps de vol et de la consommation de carburant est un élément central de la compétitivité des compagnies aériennes. Elles sont à la recherche d'outils permettant d'optimiser le choix de leurs routes aériennes avec toujours plus de précision. Pourtant, les méthodes actuellement disponibles pour l'optimisation de ces routes aériennes requièrent l'utilisation de représentations simplifiées des performances avion. Nous proposons, dans cette thèse, de répondre à cette exigence de précision et d'adapter, par conséquent, nos méthodes de résolution aux contraintes de la modélisation industrielle des performances avion tout en tenant compte de l'incertitude qui pèse sur les conditions réelles de vol (trafic aérien et conditions atmosphériques). Nous appuyons notre démarche par trois contributions scientifiques. Premièrement, nous avons mis en place un environnement de test pour algorithmes d'optimisation de trajectoires. Ce cadre a permis d'unifier la procédure de test pour l'ensemble des modèles de performances avion. Deuxièmement, nous avons développé et analysé sur le plan théorique deux nouveaux algorithmes d'optimisation stochastique globale en l'absence de dérivés. La première approche, très générique, n'utilise pas d'information particulière liée à la dynamique avion. Il s'agit de l'algorithme NSA basé sur la méthode du recuit simulé. Les développements théoriques ont abouti à la formulation des conditions et vitesse de convergence de cet algorithme. La seconde approche, l'algorithme SPY, est plus spécifique, il utilise une information de régularité lipschitzienne autour de l'optimum recherche. Il s'agit d'un algorithme de type bandits Lipschitz, basé sur la méthode de Piyavskii. De même, nous analysons les conditions de convergence de cet algorithme et fournissons une borne supérieure sur son erreur d'optimisation (regret simple).This PhD thesis is dedicated to the theoretical and numerical analysis of stochastic algorithms for the stochastic flight planning problem. Optimizing the fuel consumption and flight time is a key factor for airlines to be competitive. These companies thus look for flight optimization tools with higher and higher accuracy requirements. However, nowadays available methodologies for flight planning are based on simplified aircraft performance models. In this PhD, we propose to fulfill the accuracy requirements by adapting our methodology to both the constraints induced by the utilization of an industrial aircraft performance computation code and the consideration of the uncertainty about the real flight conditions, i.e., air traffic and weather conditions. Our proposal is supported by three main contributions. First, we design a numerical framework for benchmarking aircraft trajectory optimization tools. This provides us a unified testing procedure for all aircraft performance models. Second, we propose and study (both theoretically and numerically) two global derivative-free algorithms for stochastic optimization problems. The first approach, the NSA algorithm, is highly generic and does not use any prior knowledge about the aircraft performance model. It is an extension of the simulated annealing algorithm adapted to noisy cost functions. We provide an upper bound on the convergence speed of NSA to globally optimal solutions. The second approach, the SPY algorithm, is a Lipschitz bandit algorithm derived from Piyavskii's algorithm. It is more specific as it requires the knowledge of some Lipschitz regularity property around the optimum, but it is therefore far more efficient. We also provide a theoretical study of this algorithm through an upper bound on its simple regret

    Convergence rate of a simulated annealing algorithm with noisy observations

    No full text
    In this paper we propose a modified version of the simulated annealing algorithm for solving a stochastic global optimization problem. More precisely, we address the problem of finding a global minimizer of a function with noisy evaluations. We provide a rate of convergence and its optimized parametrization to ensure a minimal number of evaluations for a given accuracy and a confidence level close to 1. This work is completed with a set of numerical experimentations and assesses the practical performance both on benchmark test cases and on real world examples

    Regret analysis of the Piyavskii-Shubert algorithm for global Lipschitz optimization

    Get PDF
    We consider the problem of maximizing a non-concave Lipschitz multivariate function f over a compact domain. We provide regret guarantees (i.e., optimization error bounds) for a very natural algorithm originally designed by Piyavskii and Shubert in 1972. Our results hold in a general setting in which values of f can only be accessed approximately. In particular, they yield state-of-the-art regret bounds both when f is observed exactly and when evaluations are perturbed by an independent subgaussian noise

    Regret analysis of the Piyavskii-Shubert algorithm for global Lipschitz optimization

    No full text
    We consider the problem of maximizing a non-concave Lipschitz multivariate function over a compact domain by sequentially querying its (possibly perturbed) values. We study a natural algorithm designed originally by Piyavskii and Shubert in 1972, for which we prove new bounds on the number of evaluations of the function needed to reach or certify a given optimization accuracy. Our analysis uses a bandit-optimization viewpoint and solves an open problem from Hansen et al.\ (1991) by bounding the number of evaluations to certify a given accuracy with a near-optimal sum of packing numbers

    Optimisation de croisière sous incertitude de contrôle aérien ROADEF, congrès annuel

    No full text
    National audienceDans le cadre d'une thèse CIFRE AIRBUS co-encadrée par l'ENAC et l'IMT, nous avons développé une méthodologie d'optimisation de trajectoires avion sous incertitude de contrôle aérien. L'optimisation considérée vise à minimiser la consommation de carburant moyenne d'une flotte d'avions à longue portée. Les compagnies aériennes utilisent actuellement des méthodes d'optimisation qui ne prennent pas directement en compte les incertitudes liées aux opérations de contrôle du trafic aérien [1]. Ces opérations conduisent pourtant à des modifications des trajectoires et impactent la consommation. Ceci nous conduit à remettre en cause le paradigme actuel selon lequel la consommation minimale de l'ensemble de la flotte est obtenue lorsque chacun des avions cherche à voler sa trajectoire de consommation minimale sans tenir compte de l'intensité du trafic. Nous proposons donc d'intégrer ce risque de déroutement à la procédure d'optimisation des trajectoires d'avion en modélisant la congestion du trafic sous la forme d'une probabilité d'intervention du contrôle aérien. Nous avons mené une étude mettant en évidence la sous optimalité des trajectoires ainsi obtenues pour des contextes de trafic hautement congestionné

    Regret analysis of the Piyavskii-Shubert algorithm for global Lipschitz optimization

    No full text
    We consider the problem of maximizing a non-concave Lipschitz multivariate function over a compact domain by sequentially querying its (possibly perturbed) values. We study a natural algorithm designed originally by Piyavskii and Shubert in 1972, for which we prove new bounds on the number of evaluations of the function needed to reach or certify a given optimization accuracy. Our analysis uses a bandit-optimization viewpoint and solves an open problem from Hansen et al.\ (1991) by bounding the number of evaluations to certify a given accuracy with a near-optimal sum of packing numbers

    Regret analysis of the Piyavskii-Shubert algorithm for global Lipschitz optimization

    No full text
    We consider the problem of maximizing a non-concave Lipschitz multivariate function over a compact domain by sequentially querying its (possibly perturbed) values. We study a natural algorithm designed originally by Piyavskii and Shubert in 1972, for which we prove new bounds on the number of evaluations of the function needed to reach or certify a given optimization accuracy. Our analysis uses a bandit-optimization viewpoint and solves an open problem from Hansen et al.\ (1991) by bounding the number of evaluations to certify a given accuracy with a near-optimal sum of packing numbers

    Adaptive Simulated Annealing with Homogenization for Aircraft Trajectory Optimization

    No full text
    International audienceIn air traffic management, most optimization procedures are commonly based on deterministic modeling and do not take into account the uncertainties on environmental conditions (e.g., wind) and on air traffic control operations. However, aircraft performances in a real-world context are highly sensitive to these uncertainties. The aim of this work is twofold. First, we provide some numerical evidence of the sensitivity of fuel consumption and flight duration with respect to random fluctuations of the wind and the air traffic control operations. Second, we develop a global stochastic optimization procedure for general aircraft performance criteria. Since we consider general (black-box) cost functions, we develop a derivative-free optimization procedure: noisy simulated annealing (NSA)
    corecore