51 research outputs found

    Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants

    Get PDF
    We acknowledge support from the ERA-NET Coordinating Action in Plant Sciences program project ERACAPS13.089_RootBarriers, with support from Biotechnology and Biological Sciences Research Council (grant no. BB/N023927/1 to D.E.S.), the German Research Foundation (DFG; grant no. FR 1721/2-1 to R.B.F. and the AgreenSkills+ fellowship programme to MC-P which has received funding from the EU’s Seventh Framework Programme under grant agreement N° FP7-609398 (AgreenSkills+ contract). This work was also funded by the Ministry of Education, Youth and Sports of the Czech Republic (National Program for Sustainability I, grant no. LO1204), the Swedish Governmental Agency for Innovation Systems (Vinnova) and the Swedish Research Council (VR). We thank Kevin Mackenzie (University of Aberdeen–Microscopy Histology Facility) and Carine Alcon (BPMP-PHIV microscopy platform) for assistance using the confocal microscope and stereo microscope for observing the root samples, and the Swedish Metabolomics Centre (http://www.swedishmetabolomicscentre.se/) for access to instrumentation.Peer reviewedPublisher PD

    Non-invasive hydrodynamic imaging in plant roots at cellular resolution

    Get PDF
    A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelling, can achieve this goal - monitoring hydrodynamics within living root tissues at cell- and sub-second-scale resolutions. Raman imaging of water-transporting xylem vessels in Arabidopsis thaliana mutant roots reveals faster xylem water transport in endodermal diffusion barrier mutants. Furthermore, transverse line scans across the root suggest water transported via the root xylem does not re-enter outer root tissues nor the surrounding soil when en-route to shoot tissues if endodermal diffusion barriers are intact, thereby separating ‘two water worlds’

    Schengen-pathway controls spatially separated and chemically distinct lignin deposition in the endodermis

    Get PDF
    Lignin is a complex polymer precisely deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth

    ESKIMO1 Disruption in Arabidopsis Alters Vascular Tissue and Impairs Water Transport

    Get PDF
    Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE), i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1) gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid) was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR) spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components

    Le trajet de l'eau dans la plante, d'une extrĂȘme Ă  l'autre

    No full text
    Le trajet de l'eau dans la plante, d'une extrĂȘme Ă  l'autre. JournĂ©e Labex CHEMISYST Atelier "eau et pression osmotique

    MĂ©canismes de rĂ©gulation du transport d'eau dans la racine d'Arabidopsis thaliana. Effets d’un traitement par le sel et le peroxyde d’hydrogĂšne sur la fonction des aquaporines

    No full text
    L'absorption racinaire d'eau est un processus central pour le maintien du statut hydrique des plantes. La conductivitĂ© hydraulique racinaire (Lpr) traduit la facilitĂ© du passage de l'eau au travers des racines. Ce paramĂštre peut ĂȘtre modulĂ© en rĂ©ponse Ă  des contraintes de l'environnement comme le stress hydrique ou la carence en nutriments. D'un point de vue molĂ©culaire, la Lpr est dĂ©terminĂ©e en grande partie (plus de 70% chez Arabidopsis thaliana) par l'activitĂ© de canaux Ă  eau nommĂ©s aquaporines. Alors que la structure atomique de ces canaux membranaires est trĂšs bien dĂ©crite chez les animaux, les mĂ©canismes qui permettent leur rĂ©gulation chez les plantes et leur rĂŽle dans la modulation de la Lpr en rĂ©ponse aux contraintes environnementales restent trĂšs mal connus. L'objectif de cette thĂšse a Ă©tĂ© d'intĂ©grer, dans le contexte du transport d'eau dans la racine d'Arabidopsis, des mĂ©canismes cellulaires et molĂ©culaires de rĂ©gulation des aquaporines. Pour cela, la rĂ©gulation de la Lpr a Ă©tĂ© Ă©tudiĂ©e dans deux contextes physiologiques distincts, le stress salin et l'exposition Ă  des espĂšces activĂ©es d'oxygĂšne (ROS). D'une part, il a Ă©tĂ© montrĂ© qu'un traitement salin (100 mM NaCl) est capable de rĂ©duire la Lpr d'environ 35% aprĂšs 40 min, et jusqu'Ă  70% aprĂšs 3 h. En parallĂšle, il a Ă©tĂ© montrĂ© que l'expression des aquaporines est rĂ©gulĂ©e Ă  trois niveaux au moins : l'abondance des transcrits et des protĂ©ines, ainsi que la localisation sub-cellulaire de ces derniĂšres. L'ensemble de ces mĂ©canismes molĂ©culaires n'intervient de maniĂšre marquĂ©e qu'aprĂšs 2 h de traitement environ, ce qui suggĂšre en particulier que des modifications de type post-traductionnel agissent rapidement sur les aquaporines et modulent leur activitĂ© de transport d'eau. Le peroxyde d'hydrogĂšne et d'autres ROS sont des inhibiteurs puissants (jusqu'Ă  80% d'inhibition) et trĂšs rapides de la Lpr, avec un temps de demi-inhibition de 7 min environ. Au contraire de ce que nous pensions initialement, les ROS n'inhibent pas les aquaporines via une oxydation directe de leurs rĂ©sidus, mais nĂ©cessitent plutĂŽt l'activation de voies de signalisation dans lesquelles le calcium externe et des protĂ©ines kinases jouent un rĂŽle prĂ©pondĂ©rant. Au vu de leur place centrale dans la rĂ©ponse des plantes aux contraintes biotiques et abiotiques, les ROS, et H2O2 plus particuliĂšrement, pourraient jouer un rĂŽle important dans la rĂ©gulation de la Lpr en rĂ©ponse aux stress. Au final, ce travail de thĂšse a permis de mettre Ă  jour des niveaux multiples de rĂ©gulation de l'expression des aquaporines ainsi que l'implication de certaines voies de signalisation dans la suite d'Ă©vĂšnements reliant la perception par la plante de contraintes environnementales Ă  la rĂ©gulation molĂ©culaire du transport d'eau dans la racine

    Multi-scale modeling of water transport in plant roots

    No full text
    Multi-scale modeling of water transport in plant roots. GDR PhyP - Biophysique et biomécanique des plante
    • 

    corecore