1,228 research outputs found

    Dynamics of Protein Complexes Tracked by Quantitative Proteomics

    Get PDF

    UV-induced fragmentation of Cajal bodies

    Get PDF
    The morphology and composition of subnuclear organelles, such as Cajal bodies (CBs), nucleoli, and other nuclear bodies, is dynamic and can change in response to a variety of cell stimuli, including stress. We show that UV-C irradiation disrupts CBs and alters the distribution of a specific subset of CB components. The effect of UV-C on CBs differs from previously reported effects of transcription inhibitors. We demonstrate that the mechanism underlying the response of CBs to UV-C is mediated, at least in part, by PA28γ (proteasome activator subunit γ). The presence of PA28γ in coilin-containing complexes is increased by UV-C. Overexpression of PA28γ, in the absence of UV-C treatment, provokes a similar redistribution of the same subset of CB components that respond to UV-C. RNA interference–mediated knockdown of PA28γ attenuates the nuclear disruption caused by UV-C. These data demonstrate that CBs are specific nuclear targets of cellular stress-response pathways and identify PA28γ as a novel regulator of CB integrity

    Hsp90 picks PIKKs via R2TP and Tel2

    Get PDF
    Phosphatidylinositol-3 kinase-like kinases (PIKKs) are dependent on Hsp90 for their activation via the R2TP complex and Tel2. In this issue of Structure, Pal and colleagues present the molecular mechanism by which PIKKs are recruited to Hsp90

    Characterization and modeling of a hybrid electric vehicle lithium-ion battery pack at low temperatures

    Get PDF
    Although lithium-ion batteries have penetrated hybrid electric vehicles (HEVs) and pure electric vehicles (EVs), they suffer from significant power capability losses and reduced energy at low temperatures. To evaluate those losses and to make an efficient design, good models are required for system simulation. Subzero battery operation involves nonclassical thermal behavior. Consequently, simple electrical models are not sufficient to predict bad performance or damage to systems involving batteries at subzero temperatures. This paper presents the development of an electrical and thermal model of an HEV lithium-ion battery pack. This model has been developed with MATLAB/Simulink to investigate the output characteristics of lithium-ion batteries over the selected operating range of currents and battery capacities. In addition, a thermal modeling method has been developed for this model so that it can predict the battery core and crust temperature by including the effect of internal resistance. First, various discharge tests on one cell are carried out, and then, cell's parameters and thermal characteristics are obtained. The single-cell model proposed is shown to be accurate by analyzing the simulation data and test results. Next, real working conditions tests are performed, and simulation calculations on one cell are presented. In the end, the simulation results of a battery pack under HEV driving cycle conditions show that the characteristics of the proposed model allow a good comparison with data from an actual lithium-ion battery pack used in an HEV. © 2015 IEEE

    Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells

    Get PDF
    Cold start of proton exchange membrane fuel cells (PEMFCs) at sub-zero temperatures is perceived as one of the obstacles in their commercialization way in automotive application. This paper proposes a novel internal-based adaptive strategy for the cold start of PEMFC to control its operating current in real time in a way to maximize the generated heat flux and electrical power in a short time span. In this respect, firstly, an online parameter identification method is integrated into a semi-empirical model to cope with the PEMFC performances drifts during cold start. Subsequently, an optimization algorithm is launched to find the best operating points from the updated model. Finally, the determined operating point, which is the current corresponding to the maximum power, is applied to PEMFC to achieve a rapid cold start. It should be noted that the utilization of adaptive filters has escaped the attention of previous PEMFC cold start studies. The ultimate results of the proposed strategy are experimentally validated and compared to the most commonly used cold start strategies based on Potentiostatic and Galvanostatic modes. The experimental outcomes of the comparative study indicate the striking superior performance of the proposed strategy in terms of heating time and energy requirement. © 2018 Elsevier Lt

    Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies

    Get PDF
    This paper studies the impact of two significant aspects, namely fuel cell (FC) degradation and thermal management, over the performance of an optimal and a rule-based energy management strategy (EMS) in a fuel cell hybrid electric vehicle (FCHEV). To do so, firstly, a vehicle's model is developed in simulation environment for a low-speed FCHEV composed of a FC stack and a battery pack. Subsequently, deterministic dynamic programming (DP), as an optimal strategy, and bounded load following strategy (BLFS), as a common rule-based strategy, are utilized to minimize the hydrogen consumption while respecting the operating constraints of the power sources. The performance of the EMSs is assessed at different scenarios. The first objective is to clarify the effect of FC stack degradation on the performance of the vehicle. In this regard, each EMS determines the required current from the FC stack for two FCs with different levels of degradation. The second objective is to evaluate the thermal management contribution to improving the performance of the new FC compared to the considered cases in scenario one. In this respect, each strategy deals with determining two control variables (FC current and cooling fan duty cycle). The results of this study indicate that negligence of adapting to the PEMFC health state, as the PEMFC gets aged, can increase the hydrogen consumption up to 24.8% in DP and 12.1% in BLFS. Moreover, the integration of temperature dimension into the EMS can diminish the hydrogen consumption by 4.1% and 5.3% in DP and BLFS respectively. © 2020 Elsevier Lt

    Optimal cost minimization strategy for fuel cell hybrid electric vehicles based on decision making framework

    Get PDF
    The low economy of fuel cell hybrid electric vehicles is a big challenge to their wide usage. A road, health, and price-conscious optimal cost minimization strategy based on decision making framework was developed to decrease their overall cost. First, an online applicable cost minimization strategy was developed to minimize the overall operating costs of vehicles including the hydrogen cost and degradation costs of fuel cell and battery. Second, a decision making framework composed of the driving pattern recognition-enabled, prognostics-enabled, and price prediction-enabled decision makings, for the first time, was built to recognize the driving pattern, estimate health states of power sources and project future prices of hydrogen and power sources. Based on these estimations, optimal equivalent cost factors were updated to reach optimal results on the overall cost and charge sustaining of battery. The effects of driving cycles, degradation states, and pricing scenarios were analyzed

    Real-time backstepping control for fuel cell vehicle using supercapacitors

    Get PDF
    A key issue of real-time applications is ensuring the operation by taking into account the stability constraints. For multisource vehicles, stability is impacted by the multisource interactions. Backstepping control ensures stable control for most classes of nonlinear systems. Nevertheless, no backstepping control in real time has been yet proposed for multisource vehicles. The objective of this paper is to apply the backstepping control to a multisource vehicle with fuel cell and supercapacitors for real-time implementation. A distribution criterion is used to allocate energy between sources. Experimental results demonstrate that the developed backstepping control can be implemented in real-time conditions. The supercapacitors can thus help the fuel cell to meet the requirements of the load with a guarantee of system stability. © 1967-2012 IEEE
    • …
    corecore