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Abstract— The low economy of fuel cell hybrid electric vehicles 
is a big challenge to their wide usage. A road, health, and 
price-conscious optimal cost minimization strategy based on 
decision making framework was developed to decrease their 
overall cost. First, an online applicable cost minimization strategy 
was developed to minimize the overall operating costs of vehicles 
including the hydrogen cost and degradation costs of fuel cell and 
battery. Second, a decision making framework composed of the 
driving pattern recognition-enabled, prognostics-enabled, and 
price prediction-enabled decision makings, for the first time, was 
built to recognize the driving pattern, estimate health states of 
power sources and project future prices of hydrogen and power 
sources. Based on these estimations, optimal equivalent cost 
factors were updated to reach optimal results on the overall cost 
and charge sustaining of battery. The effects of driving cycles, 
degradation states, and pricing scenarios were analyzed. 

Index Terms—Energy management, fuel cell hybrid electric 
vehicle, decision making, prognostics, driving pattern recognition, 
price evolution. 

I. INTRODUCTION

A. Motivation and challenges
Due to the increasing severeness of air pollution and global

warming, governments and international agencies have put 
forward many policies and taken many methods to reduce the 
effects on climate change. In the aspect of transportation, fuel 
cell hybrid electric vehicles (FCHEVs) take fuel cells and 
energy storage sources (ESSs) (battery in this paper) as the 
power sources and have many advantages like zero pollution, 
high efficiency, satisfied driving range, short refueling time, 
and not relying on fossil, which are thought a potential solution 
to the energy crisis and environment pollution [1]. The hybrid 
configurations of FCHEVs go with an energy management 
problem. Therefore, an energy management strategy (EMS) is 
needed for FCHEVs to control the distribution of power 
demand among different power sources. Compared to other 
electric vehicles and internal combustion engine vehicles, 
FCHEVs are lack of competition on overall cost due to the high 
cost and low lifetime of fuel cell and batteries [2]. Therefore, in 
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this paper, an optimal cost minimization strategy (OCMS) is 
developed to minimize the operating cost and improve the 
economy of FCHEVs. 
B. Literature review

Studies on EMSs can be divided into the rule-based strategy
(RBS) and optimization-based strategy (OBS) [3]. The 
heuristic rules are the core of the RBS. These rules can be 
expressed as the deterministic rules in deterministic rule-based 
strategies or fuzzy rules in fuzzy rule-based strategies. Based 
on these rules, the on/off of fuel cell, operating models of ESSs, 
and corresponding power of power sources are determined to 
make sure the normal operation of the vehicle. Load following 
strategy, operating mode control strategy and fuzzy logic 
control are typical RBSs. The RBSs can be easily designed by 
engineers based on their experience. The real-time implication 
of these RBSs is also simple and their resilience on different 
driving patterns is strong. But optimal results for the designed 
objectives of EMSs are hardly reached. 

In order to overcome the deficiency of the RBS, OBS is 
designed to optimize the operation of vehicles and achieve the 
optimal objectives. The general configuration of OBS includes 
one or more optimal objectives and certain constraints such as 
limiting the state of charge (SOC) of ESSs and power ranges of 
power sources. Based on the optimization horizons, OBS can 
be divided into the global OBS taking the whole driving cycle 
as optimization horizons and local OBS on the instantaneous 
sampling time. Dynamical programming (DP), genetic 
algorithm (GA) and particle swarm optimization are widely 
used algorithms to solve global optimization problems to 
achieve optimal objectives [4, 5]. Equivalent consumption 
minimization strategy, Pontryagin's minimum principle (PMP) 
and model predictive control (MPC) are typical local OBSs [6, 
7].  

Many studies on EMSs for FCHEVs only focus on the 
minimization of hydrogen consumption or equivalent hydrogen 
consumption from ESSs without sufficiently considering the 
degradation of fuel cell and battery. A small number of studies 
try to make a tradeoff between battery degradation and 
hydrogen consumption. For example, in [8] and [9] discrete 
dynamic programming and convex optimization are 
respectively used to optimize the costs of battery degradation 
and hydrogen consumption. But the fuel cell degradation is not 
considered into the optimal objectives of these studies. In [10], 
minimizing the hydrogen and fuel cell lifetime costs as the 
objective function is solved through stochastic dynamic 
programming (SDP). Three representative EMSs: DP, PMP, 
and MPC in [11] are developed to minimize hydrogen 
consumption and fuel cell durability. In [12] and [13], the fuel 
cell models are identified online to find the variation of fuel cell 
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system performances and to operate the fuel cell in the best 
efficiency and power operating points through PMP. Battery 
degradation is not considered in the above researches. The 
deficiency for the above researches on the minimizing oval cost 
of FCHEVs can be concluded as not considering all power 
sources degradation.  

Fuzzy logic control optimized by GA in [14], MPC based 
sequential quadratic programming in [15] and DP in [16, 17] 
consider all hydrogen cost and degradation costs of fuel cell 
and battery. But empirical degradation models of fuel cell and 
battery used to calculate their degradation costs are not precise, 
which cannot describe the dynamical degradation rates of 
power sources under the dynamical conditions of vehicles like 
the changeable external environment condition, temperature, 
and operating conditions. The lifetime costs calculated based 
on the unprecise degradation rates bring a big challenge to the 
reliability of their developed EMSs. The deficiency for these 
researches can be defined as not reliable and precise lifetime 
cost estimation, which also occurs in the researches with the 
first deficiency. 

Furthermore, a common serious drawback in present 
researches is that the variable driving situations, state of health 
(SOH) of power sources and prices of hydrogen and power 
sources, which affect the optimal cost results and charge 
sustaining of battery, even more seriously, the normal operation 
of the vehicle, are totally not considered. The EMS control 
parameters optimized for specified driving cycles cannot meet 
all kinds of road situations. The degradation of power sources 
leads to the decrease of their performances and corresponding 
degradation rates will change along with SOHs [18]. Prices of 
hydrogen and power sources will also change along with their 
technology development on production, usage, investment, and 
operation. In a word, the constant parameters in the EMSs 
aiming to improve the economy of FCHEVs cannot meet the 
dynamical and variable operating conditions of FCHEVs, no 
matter in the external environment like variable driving 
conditions and prices or in the internal conditions like 
degradation and failures.  
C. Main contributions

To the best knowledge of the authors, no efforts have been
made to develop a cost minimization strategy (CMS) to 
minimize the hydrogen cost and lifetime costs of power sources 
under variable internal and external conditions on power 
sources and road situations with adaptive control parameters. In 
order to bridge this research gap and overcome shortcomings of 
present researches on improving FCHEVs economy, an OCMS 
for FCHEVs based on decision making framework considering 
the dynamical road information, power sources degradation, 
price evolution of materials is developed. Three main original 
contributions can be concluded to distinguish our research from 
other exiting studies.  

First, a CMS is built to improve the fuel economy and 
decrease the lifetime costs of fuel cell and battery based on their 
degradation models.  

Second, a decision making framework, for the first time, is 
built composed of the driving pattern recognition-enabled 
decision making (DPRDM), prognostics-enabled decision 
making (PDM), and price prediction-enabled decision making 
(PPDM). Based on the DPRDM, real-time driving patterns can 

be recognized through the support vector machine (SVM). 
Based on the PDM, the health states of fuel cell and battery are 
online estimated based on the unscented Kalman filter (UKF) 
and are further able to precisely calculate the lifetime costs of 
power sources cooperating with their empirical degradation 
models. Through the PPDM, the price evolutions of hydrogen 
and power sources until the end of the lifetime of the vehicle are 
projected based on the experience rate approach. Under the 
innovative decision making framework, the internal and 
external conditions of the vehicle can be determined.  

Third, the pre-optimal equivalent cost factors (ECFs) 
through the GA are calculated. Based on the recognized diving 
cycle, estimation of SOHs and price prediction, optimal ECFs 
and corresponding suitable control policies are adjusted to 
extend the lifetimes of fuel cell and battery, keep the charge 
sustaining of battery and achieve the minimization objective of 
the overall cost.  
D. Organization

The rest paper is organized as follows: the FCHEV
architecture and the models of power sources are presented in 
Section II. In Section III, the CMS is introduced. The decision 
making framework including DPRDM, PDM and PPDM is 
detailed in Section IV. The optimal ECFs determined by GA 
and simulation results under the OCMS are given in Section V. 
The effects of driving, degradation, and pricing scenarios on the 
optimal costs are explored in Section VI. Finally, conclusions 
are drawn. 

II. VEHICLE MODEL

 In this section, the architecture of FCHEV, adapted from the 
2017 Toyota Mirai, is shown in Fig. 1. The main power source 
is polymer electrolyte membrane fuel cell (PEMFC) and a 
lithium-ion battery stack assists for the quick dynamical 
response and recycling braking energy.  
A. Powertrain architecture

As shown in the powertrain architecture of FCHEV, an AC
motor is used to drive the vehicle. Fuel cell and battery are 
connected to the DC bus through a unidirectional DC/DC 
converter and a bidirectional DC/DC converter respectively to 
supply the power to the AC motor via a DC/AC inverter. The 
main specifications of the FCHEV are listed in Table I. The 
power balance between power sources and power 
consummation of the FCHEV can be described as  [19]: 

 𝑃𝑃𝑑𝑑 = (𝑃𝑃𝑏𝑏 − 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎) ⋅ 𝜂𝜂𝑎𝑎𝑎𝑎 ⋅ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (1) 

𝑃𝑃𝑏𝑏 = 𝑃𝑃𝑓𝑓𝑎𝑎 ⋅ 𝜂𝜂𝑑𝑑𝑎𝑎𝑓𝑓𝑎𝑎 + 𝑃𝑃𝑏𝑏𝑎𝑎 ⋅ 𝜂𝜂𝑑𝑑𝑎𝑎𝑏𝑏𝑎𝑎 (2) 

Fig. 1. Power train architecture. 
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where 𝑃𝑃𝑑𝑑 is the required power at wheels to hold the vehicle 

driving at a certain speed, 𝑃𝑃𝑏𝑏 is the supplied power by the fuel 
cell and battery on DC bus, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 is the auxiliary power for the 
auxiliary components of the vehicle which is taken as a 
constant value, 𝜂𝜂𝑎𝑎𝑎𝑎  , 𝜂𝜂𝑑𝑑𝑎𝑎𝑓𝑓𝑎𝑎 , 𝜂𝜂𝑑𝑑𝑎𝑎𝑏𝑏𝑎𝑎  and 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  are efficiencies, 
𝑃𝑃𝑓𝑓𝑎𝑎 and 𝑃𝑃𝑏𝑏𝑎𝑎 are the fuel cell and battery power, 𝑣𝑣 is the vehicle 
speed, 𝜌𝜌 is the air density, 𝑚𝑚𝑣𝑣 is the vehicle mass, 𝐴𝐴 is the front 
surface of the vehicle, 𝑔𝑔 is gravitational acceleration, 𝐶𝐶𝑎𝑎 is the 
drag coefficient, 𝐶𝐶𝑚𝑚 is the aerodynamic drag coefficient and 𝛼𝛼 
is the sloping angle of the road. 

B. Fuel cell system model
1) Electrical model: Fuel cell stack as the core of the fuel cell
system transforms the chemical energy into electrical energy
through the reaction between hydrogen and oxygen [20]. Many
cells compose into a fuel cell stack due to the low voltage of a
single cell (approximate 1V). The 370-cells PEMFC with a
rated power of 114kW is used in the FCHEV. The fuel cell
stack voltage can be calculated through the voltage of a single
cell multiplied by the number of cells as follows:

𝐸𝐸 = 𝑁𝑁(𝐸𝐸𝑚𝑚𝑟𝑟𝑣𝑣 − 𝐸𝐸𝑎𝑎𝑎𝑎𝑚𝑚 − 𝐸𝐸𝑚𝑚ℎ𝑚𝑚 − 𝐸𝐸𝑎𝑎𝑚𝑚𝑐𝑐) (4) 
where N  is the cell number, 𝐸𝐸𝑚𝑚𝑟𝑟𝑣𝑣  is the thermodynamic 

reversible potential, 𝐸𝐸𝑎𝑎𝑎𝑎𝑚𝑚  is the activation losses, 𝐸𝐸𝑚𝑚ℎ𝑚𝑚  is the 
ohmic losses, 𝐸𝐸𝑎𝑎𝑚𝑚𝑐𝑐 is the concentration losses. These potentials 
in the static state can be defined as follows: 

𝐸𝐸𝑚𝑚𝑟𝑟𝑣𝑣 = 𝐸𝐸0 − 0.85𝑒𝑒−3(𝑇𝑇 − 𝑇𝑇𝑎𝑎) + 𝑅𝑅𝑅𝑅
2𝐹𝐹
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where 𝐸𝐸0  is the reversible nearest potential of a single 
cell,  𝑃𝑃𝑂𝑂2  and 𝑃𝑃𝐻𝐻2 are the partial pressures of oxygen and 
hydrogen respectively, 𝑇𝑇 and 𝑇𝑇𝑎𝑎  are the temperatures of fuel 
cell and temperature correction offset respectively, 𝑅𝑅  is the 
ideal gas constant, 𝐹𝐹  is Faraday constant, 𝐼𝐼𝑓𝑓𝑎𝑎  is fuel cell 
current, 𝛼𝛼 is the symmetry factor, 𝐼𝐼0  is the exchange current 
density, 𝑅𝑅𝐹𝐹𝐹𝐹  is the internal resistance, B is an empirical 
constant, 𝐼𝐼𝑚𝑚 is the maximum allowed current.  

The fuel cell output power and system efficiency along with 
currents are shown in Fig. 2. During the operation process of 
the fuel cell system, the hydrogen consumption rate 𝑚𝑚𝐻𝐻2 can be 
defined as: 

𝑚𝑚𝐻𝐻2 = ∫𝑚𝑚0
𝑀𝑀𝐻𝐻2𝑁𝑁
2𝐹𝐹

𝐼𝐼𝑓𝑓𝑎𝑎(𝑡𝑡)𝑑𝑑𝑡𝑡 (6) 

where t is the operating time of the fuel cell system, 𝑀𝑀𝐻𝐻2is 
the hydrogen molar mass, N is the cell number, F is the Faraday 
constant. 
2) Degradation model: Along with the operation of power
sources, their degradation is unavoidable. For the fuel cell, the
degradation concerns many aspects: catalyst layer degradation,
membrane degradation, and gas diffusion layer degradation,
leading to the decrease of fuel cell voltage and output power
over the same amount of hydrogen input. Minimizing fuel cell
degradation to achieve the economic objective is one of the
most important objectives of EMS. In order to quantify the
degradation’s cost of the fuel cell, its degradation model to
calculate its degradation rates under different operations is
built.

In [21], the operation of fuel cell is divided into four 
operating conditions: the start/stop cycle, load changing cycle, 
idling mode, and high power mode. Their degradation rates are 
defined as constant values. Based on the research of [22, 23] on 
the degradation rates of fuel cell tested in automotive 
conditions, the fuel cell decay rates and currents have a 
quadratic relationship. Besides, the start/stop cycle leads to a 
predominately comparable increase of fuel cell degradation. 
Therefore, an "always-on strategy" is taken to fuel cell to 
increase its lifetime. The fuel cell empirical degradation model 
along with its operating conditions, adapted from [21], is built 
as: 

𝑉𝑉′ = 𝑘𝑘 ��𝑎𝑎 ⋅ 𝐼𝐼𝑓𝑓𝑎𝑎2 + 𝑏𝑏 ⋅ 𝐼𝐼𝑓𝑓𝑎𝑎 + 𝑐𝑐� ⋅ 𝑡𝑡 + 𝑉𝑉4′ ⋅ 𝑠𝑠2� (7) 

where a, b and c are fitting coefficients, t is the sampling 
time, 𝑉𝑉4′ is the degradation rate under load changing condition, 
𝑠𝑠2 is the rapid load-changing cycle time. 
C. Battery model
1) Electrochemistry model: A lithium-ion battery pack with 198
cells with a nominal capacity of 1.6 kWh is used as the ESS of
the FCHEV. An electrochemistry-based battery model in the
cell level based on [24] is built to estimate its voltage as a
function of time given the current drawn from the battery. The
battery is composed of positive and negative electrodes and
electrolyte. The cell’s overall voltage is decided by the
potential difference between the positive current collector
𝑄𝑄𝑠𝑠(0, 𝑡𝑡) and the negative one 𝑄𝑄𝑠𝑠(𝐿𝐿, 𝑡𝑡) minus resistance losses.
The cell’s potential contributed by several electrochemical

TABLE I 
THE SPECIFICATIONS OF THE VEHICLE AND MAIN COMPONENTS. 

Components Parameters 

Vehicle Mass 1850 kg Front surface 2.786 𝑚𝑚2 
PEMFC Number of cells 370 Rated power 114 kW 
Battery Energy capacity 1.6 kWh Nominal voltage 245 V 

Fig. 2.  Fuel cell power and efficiency along with currents. 

Fig. 3. Battery voltages [24]. 



processes is shown in Fig. 3. The detailed modeling process can 
be found in [24]. The relationship between battery output 
voltage 𝑉𝑉(𝑡𝑡) and different potentials can be expressed as: 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑈𝑈,𝑝𝑝 − 𝑉𝑉𝑂𝑂,𝑝𝑝 − 𝑉𝑉𝑈𝑈,𝑐𝑐 − 𝑉𝑉𝑂𝑂,𝑐𝑐 − 𝑉𝑉𝑚𝑚 (8) 
where 𝑉𝑉𝑈𝑈,𝑝𝑝 and 𝑉𝑉𝑈𝑈,𝑐𝑐 are the equilibrium potentials, 𝑉𝑉𝑂𝑂,𝑝𝑝 and 

𝑉𝑉𝑂𝑂,𝑐𝑐 are the surface potentials, 𝑉𝑉𝑚𝑚 is the ohmic potential due to 
the ohmic resistance at the solid-phases ( 𝑉𝑉𝑆𝑆,𝑝𝑝  and 𝑉𝑉𝑆𝑆,𝑐𝑐 ), 
electrolyte ( 𝑉𝑉𝑟𝑟 ) and current collectors ( 𝑉𝑉𝑎𝑎𝑎𝑎,𝑝𝑝  and 𝑉𝑉𝑎𝑎𝑎𝑎,𝑐𝑐 ). 
Subscript 𝑝𝑝 and 𝑠𝑠 represent positive and negative respectively.  

Equilibrium potential of each electrode is decided by the 
amount of charge in the electrodes as: 

𝑉𝑉𝑈𝑈,𝑖𝑖 = 𝑈𝑈0 + 𝑅𝑅𝑅𝑅
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(9) 

where 𝑈𝑈0 is the reference voltage, T is the electrode 
temperature, 𝑠𝑠 is the number of electrons transferred in the 
reaction, 𝑉𝑉𝑎𝑎𝑎𝑎𝑚𝑚,𝑖𝑖  is the activity coefficient term, 𝐴𝐴𝑖𝑖,𝑘𝑘  is the 
empirical coefficient, 𝑠𝑠 represents subscript p or n.  

Surface overpotential 𝑉𝑉𝑂𝑂,𝑖𝑖 and ohmic overpotential 𝑉𝑉𝑚𝑚 can be 
calculated as: 

𝑉𝑉𝑂𝑂,𝑖𝑖 = 𝑅𝑅𝑅𝑅
𝐹𝐹𝛼𝛼
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where 𝛼𝛼 is the symmetry factor, 𝐽𝐽𝑖𝑖 is the current density, 𝐽𝐽𝑖𝑖0 
is the exchange current density, 𝑅𝑅 is the constant resistance. 

The battery SOC is defined as the charge fraction of the 
negative electrode and the whole battery as: 

𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑞𝑞𝑛𝑛
0.6𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

(11) 

where 𝑞𝑞𝑐𝑐 is the amount of Li ions in the negative electrode, 
𝑞𝑞𝑚𝑚𝑎𝑎𝑎𝑎 is the total amount of Li ions. 
2) Degradation model: The battery degradation process is

complicated and influenced by many factors like time,
temperature, discharge rate, depth of discharge [25]. An
empirical degradation model adapted from [26] is used to
quantify battery degradation including calendar aging and cycle 
aging. The whole capacity loss Qloss including the capacity loss 
Qloss
calendar  due to the calendar aging and the capacity loss

Qloss
cycledue to the cycle aging is defined as :

𝑄𝑄𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑄𝑄𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙𝑟𝑟 + 𝑄𝑄𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠

𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙𝑟𝑟

𝑄𝑄𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑙𝑙𝑟𝑟𝑐𝑐𝑑𝑑𝑎𝑎𝑚𝑚 = 𝐴𝐴𝑡𝑡0.5𝑒𝑒
−𝐸𝐸𝐴𝐴
𝑅𝑅𝑅𝑅

𝑄𝑄𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠
𝑎𝑎𝑐𝑐𝑎𝑎𝑙𝑙𝑟𝑟 = (𝑎𝑎𝑇𝑇2 + 𝑏𝑏𝑇𝑇 + 𝑐𝑐)𝑒𝑒(𝑑𝑑𝑅𝑅+𝑟𝑟)𝐼𝐼𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝐴𝐴ℎ𝑚𝑚𝑚𝑚

 (12) 

where 𝐴𝐴, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 , 𝑑𝑑  and 𝑒𝑒 are the coefficient factors, 𝐸𝐸𝐴𝐴  is 
the activation energy, 𝑅𝑅 is the gas constant, 𝑇𝑇 is the absolute 
temperature, 𝑡𝑡  is time, 𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚𝑟𝑟  is the charging/discharging rate 
expressed as C-rate, 𝐴𝐴ℎ𝑚𝑚𝑚𝑚 is the Ah-throughout. 

III. COST MINIMIZATION STRATEGY

In this section, the composition of CMS as the basis of 
OCMS is introduced, including the objective function and 
constraints.  
A. Cost objective

The objective of CMS is to minimize the overall operating
cost of FCHEV including hydrogen cost, fuel cell, and battery 

lifetime costs. The overall cost 𝐶𝐶𝑤𝑤ℎ𝑚𝑚𝑙𝑙𝑟𝑟 in the online sampling 
time ∆𝑡𝑡 can be defined as: 

𝐶𝐶𝑤𝑤ℎ𝑚𝑚𝑙𝑙𝑟𝑟 = 𝐶𝐶𝐻𝐻2 + 𝐶𝐶𝑓𝑓𝑎𝑎 + 𝐶𝐶𝑏𝑏𝑎𝑎 + 𝐶𝐶𝑆𝑆𝑂𝑂𝐹𝐹 + 𝐶𝐶𝑝𝑝𝑟𝑟𝑐𝑐 (13) 
where 

1) 𝐶𝐶𝐻𝐻2 is the hydrogen cost, calculated based on the hydrogen
price 𝜙𝜙ℎ2 and hydrogen consumption 𝑚𝑚𝐻𝐻2 at ∆𝑡𝑡 as:

𝐶𝐶𝐻𝐻2 = 𝜙𝜙ℎ2𝑚𝑚𝐻𝐻2 (14) 
2) The fuel cell lifetime cost 𝐶𝐶𝑓𝑓𝑎𝑎 and battery lifetime cost 𝐶𝐶𝑏𝑏𝑎𝑎 
can be calculated based on the fuel cell price per unit of power
𝜙𝜙𝑓𝑓𝑎𝑎, fuel cell nominal power 𝑃𝑃𝑐𝑐𝑓𝑓𝑎𝑎 , battery price per unit of
energy 𝜙𝜙𝑏𝑏𝑎𝑎 , battery nominal energy 𝐸𝐸𝑐𝑐𝑏𝑏𝑎𝑎  and corresponding
SOH decreases in ∆𝑡𝑡 as follows:

𝐶𝐶𝑓𝑓𝑎𝑎 = 𝜙𝜙𝑓𝑓𝑎𝑎𝑃𝑃𝑐𝑐𝑓𝑓𝑎𝑎𝛥𝛥𝑆𝑆𝛥𝛥ℎ𝑓𝑓𝑎𝑎 = 𝜙𝜙𝑓𝑓𝑎𝑎𝑃𝑃𝑐𝑐𝑓𝑓𝑎𝑎
𝑉𝑉 ′

𝛥𝛥𝑉𝑉
(15) 

𝐶𝐶𝑏𝑏𝑎𝑎 = 𝜙𝜙𝑏𝑏𝑎𝑎𝐸𝐸𝑐𝑐𝑏𝑏𝑎𝑎𝛥𝛥𝑆𝑆𝛥𝛥ℎ𝑏𝑏𝑎𝑎 = 𝜙𝜙𝑏𝑏𝑎𝑎𝐸𝐸𝑐𝑐𝑏𝑏𝑎𝑎
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙′

𝑄𝑄𝑟𝑟𝑚𝑚𝑟𝑟
(16) 

𝛥𝛥𝑆𝑆𝛥𝛥ℎ𝑓𝑓𝑎𝑎 and 𝛥𝛥𝑆𝑆𝛥𝛥ℎ𝑏𝑏𝑎𝑎 are instantaneous losses of their SOHs, 
𝛥𝛥𝑉𝑉 is the voltage drop criteria for the end of the lifetime of fuel 
cell (10% voltage decrease), 𝑄𝑄𝑚𝑚𝑎𝑎𝑚𝑚 is the charge loss criteria for 
the end of the lifetime of battery (20% capacity losses).  
3) 𝐶𝐶𝑆𝑆𝑂𝑂𝐹𝐹(t) is the battery sustaining charging cost. Due to the
hybrid architecture of FCHEV drivetrain, the charge sustaining
of battery is required meaning that the battery SOC at the end of
driving cycles should be equal to its initial one. The charging
sustaining objective of CMS is pursued through 𝐶𝐶𝑆𝑆𝑂𝑂𝐹𝐹, which is
added as the penalty cost in the objective function. When
battery SOC at sampling time t is less than the initial SOC, 𝐶𝐶𝑆𝑆𝑂𝑂𝐹𝐹 
is defined as the sum of the hydrogen consumption cost 𝐶𝐶𝐻𝐻2

𝑝𝑝 ,
fuel cell and battery aging costs 𝐶𝐶𝑓𝑓𝑎𝑎

𝑝𝑝  and 𝐶𝐶𝑏𝑏𝑎𝑎
𝑝𝑝  during the

hypothetically charging process of battery back to initial SOC
by fuel cell at its maximum efficiency point, as:

𝐶𝐶𝑆𝑆𝑂𝑂𝐹𝐹(t) = 𝜆𝜆𝑆𝑆𝑂𝑂𝐹𝐹�𝐶𝐶𝐻𝐻2
𝑝𝑝 + 𝐶𝐶𝑓𝑓𝑎𝑎

𝑝𝑝 + 𝐶𝐶𝑏𝑏𝑎𝑎
𝑝𝑝 � (17) 

The calculation of penalty costs is the same as (13). 𝜆𝜆𝑆𝑆𝑂𝑂𝐹𝐹 is the 
equivalent cost factor (ECF) for the battery sustaining charge.  
4) 𝐶𝐶𝑝𝑝𝑟𝑟𝑐𝑐 is the battery SOC penalty cost to limit its SOC range,
defined as:

𝐶𝐶𝑝𝑝𝑟𝑟𝑐𝑐 = � 0, 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑖𝑖𝑐𝑐 < 𝑆𝑆𝑆𝑆𝐶𝐶 < 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑎𝑎𝑎𝑎
+∞, 𝑆𝑆𝑆𝑆𝐶𝐶 ≥ 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑖𝑖𝑐𝑐, 𝑆𝑆𝑆𝑆𝐶𝐶 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑎𝑎𝑎𝑎  (18)

when battery SOC is greater than the maximum SOC 
𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑎𝑎𝑎𝑎 (0.85) or less than minimum SOC 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑖𝑖𝑐𝑐 (0.45), a 
very large value is added to the objective function to avoid the 
overcharge or over-discharge of battery. 
B. Constraints

Some constraints are set for the optimal control problem to
make sure the normal operation of the vehicle and prolong the 
lifetime of power sources. The above objective function and 
constraints of CMS can be defined as: 

𝑀𝑀𝑠𝑠𝑠𝑠 𝑓𝑓𝑤𝑤(𝑡𝑡) = 𝐶𝐶𝑤𝑤ℎ𝑚𝑚𝑙𝑙𝑟𝑟

�

𝐼𝐼𝑓𝑓𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐 ≤ 𝐼𝐼𝑓𝑓𝑎𝑎 ≤ 𝐼𝐼𝑓𝑓𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎

𝐼𝐼𝑏𝑏𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐 ≤ 𝐼𝐼𝑏𝑏𝑎𝑎 ≤ 𝐼𝐼𝑏𝑏𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎

−𝑑𝑑𝐼𝐼𝑓𝑓𝑎𝑎 ≤
𝐼𝐼𝑓𝑓𝑓𝑓(𝑚𝑚)−𝐼𝐼𝑓𝑓𝑓𝑓(𝑚𝑚−1)

𝑅𝑅
≤ 𝑑𝑑𝐼𝐼𝑓𝑓𝑎𝑎

(19) 

Fuel cell current range (𝐼𝐼𝑓𝑓𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐: 0 A, 𝐼𝐼𝑓𝑓𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎: 450 A), battery 
current range ( 𝐼𝐼𝑏𝑏𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐 : -150 A, 𝐼𝐼𝑏𝑏𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎 : 150 A), and fuel cell 



dynamical change rate (𝑑𝑑𝐼𝐼𝑓𝑓𝑎𝑎 : 100 A/s) are limited through 
constraints. Sequential quadratic programming generates steps 
by solving quadratic subproblems and is particularly good at 
solving problems with significant nonlinearity. Therefore, it is 
used to solve this non-line constrained local optimization 
problem of CMS. 

IV. DECISION MAKING FRAMEWORK
The uncertainties on the variable road information, health 

and failure states of drivetrain components, and prices of fuel 
and power sources bring a big challenge to the optimal results 
of minimizing the operating cost of FCHEVs and charge 
sustaining of battery. To solve this problem, a decision making 
framework, including DPRDM, PDM and PPDM to recognize 
the dynamical driving pattern, estimate the health state and 
project the future price, cooperating with CMS and making 
decisions to extend the lifetime of power sources and reduce the 
overall cost of the FCHEV is built. The general architecture of 
the decision making framework is shown in Fig. 4.  
A. Driving pattern recognition-enabled decision making

The core of the DPRDM is the driving pattern recognition,
which is to sample and extract feature parameters from a period 
of past driving profiles. Then the well-trained classifiers are 
used to recognize the current driving patterns [27]. Based on the 
recognized driving pattern, the right decisions on optimal 
control parameters can be made. 

10 parameters of driving profiles are chosen to recognize the 
driving patterns, including max speed, average speed, max 
acceleration, max deceleration, average acceleration, average 
deceleration, idle time factor (idle time/total time), low-speed 
factor (low-speed time/total time), mid-speed factor (mid-speed 
time/total time), high-speed factor (high-speed time/total time). 
The low, mid, and high speeds are defined as the speed less than 
40 km/h, between 40 km/h to 80 km/h, and higher than 80 km/h 
respectively. Support vector machine (SVM) shows good 
results in the classification technique on medical diagnostics, 
optical character recognition, electric load forecasting and other 
fields. Therefore, it is used in the driving cycle recognition in 
this paper. The SVM belongs to the supervised machine 
learning and its architecture is shown as Fig. 5. The SVM is 
composed of the input layer, hidden layer, and output layer. 
Each layer has many proceeding units and parameterized by a 
weight vector (w) and a bias (b). The output y can be calculated 
through the hidden layer and corresponding weight vectors and 
biases. The LIBSVM software developed by [28] is used to the 
driving pattern recognition. 

The driving situation can be divided into urban, suburban 
and highway conditions. Two typical driving cycles are chosen 
respectively for three driving conditions (NYCC and 
MANHATTAN for urban condition, WVUSU and CSHV for 
suburban condition, and US06-HWY and HWFET for highway 
condition). The 10 parameters of six typical driving cycles are 
taken as the input variables and used to train the SVM. Based 
on the vehicle traveling parameters and trained SVM model, 
the current driving category can be classified into 1 to 6 
corresponding to six typical driving cycles. 𝛾𝛾, the kernel width 
of SVM kernel function and penalty coefficient C are vital 
parameters for SVM, affecting recognition accuracy. GA as 
one of the commonly used optimization algorithms is chosen to 

optimize the parameters 𝛾𝛾  and C to improve recognition 
accuracy. The process of GA based SVM for driving cycle 
recognition is shown in Fig. 6. Based on the optimal GA-SVM 
model and collected online vehicle speed, the driving pattern of 
the vehicle can be decided. 
B. Price prediction-enabled decision making

The wide deployment of FCHEVs and the building of
hydrogen stations in the following decades, the hydrogen, fuel 
cell, and battery prices will change along with time, which are 
important parameters for CMS. Experience curves as the core 
of PPDM describing the development of production cost as a 
function of increased cumulative production accounting for all 
cost factors (sales, research, production, depreciation and so 
on) is used to project their future prices.  

 Experience curves can be derived based on Wright’s law 
using historic product prices and cumulative installed 

Fig. 4.  Decision making framework of energy management strategy 

Fig. 5. The architecture of the SVM 

Fig. 6. Optimal GA-SVM model for driving cycle recognition 

1



capacities in the long term analysis. The product price tends to 
decrease by a constant percentage for each doubling of 
cumulative deployments such as the cumulative installed 
energy or power capacity of fuel cell and battery. This 
phenomenon can be described as: 

𝐶𝐶𝑚𝑚 = 𝐶𝐶0𝑋𝑋−𝑏𝑏 (20) 
𝐸𝐸𝑅𝑅 = 1 − 2−𝑏𝑏 (21) 

where 𝐶𝐶𝑚𝑚 and 𝐶𝐶0 are the capital costs at the time t and initial 
one respectively, b is the experience rate, 𝐸𝐸𝑅𝑅 is the learning 
rate representing the price reduction for each doubling of the 
installed capacity, 𝑋𝑋 is the ratio of cumulative production at t 
𝑄𝑄𝑚𝑚 and initial one 𝑄𝑄0 defined as: 

𝑋𝑋 = 𝑄𝑄𝑟𝑟
𝑄𝑄0

 (22) 
The published experience curves from peer-reviewed 

literature, research, and industry reports and software are used 
in this paper. 
1)Hydrogen price: Hydrogen can be produced through many
pathways like coal gasification, steam reforming of methane,
biomass gasification, and water electrolysis. Natural gas
reforming and on-site electrolysis as two main pathways are
considered in this study. The final hydrogen price from
hydrogen station can be calculated based on the cost of
hydrogen production, delivering and dispensing as:

𝜙𝜙ℎ2 =
5∑ 𝐶𝐶𝐴𝐴+𝑉𝑉𝐴𝐴+𝑂𝑂𝑂𝑂

𝐴𝐴𝐻𝐻𝑂𝑂
4
1

𝑐𝑐
(23) 

where 𝜙𝜙ℎ2 is the hydrogen prices from stations, 𝐶𝐶𝐴𝐴 is the 
capital costs, 𝑉𝑉𝐴𝐴  is the annuitized expense, 𝑆𝑆𝑃𝑃  is the 
operational cost, 𝐴𝐴𝐴𝐴𝑃𝑃 is the annual hydrogen production, 𝑠𝑠 is 
the station lifetime. Based on the research [29], the hydrogen 
overall price can be determined, shown in Fig. 7. The overall 
price firstly decreases and latterly holds at a certain price and 
gets a little bit increase, which is mainly due to the increasing 
percentage share of electrolysis. 
2)Battery and fuel cell prices: In order to project the price
reductions of battery and fuel cell, the market diffusion
processes of technologies are calculated based on the
archetypal sigmoid function (S-curve), which has been widely
used on the deployment of several technologies. The installed
nominal capacity of battery based on the logistic growth
function is shown as:

𝐶𝐶𝑐𝑐 = 𝐹𝐹𝑚𝑚

1+
�𝐶𝐶𝑚𝑚−𝐶𝐶𝑏𝑏�

𝐶𝐶𝑏𝑏
𝑟𝑟−𝑟𝑟𝑛𝑛

(24) 

where 𝐶𝐶𝑐𝑐 is the annual installed battery capacity, 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑏𝑏 
are the maximum and initial annual installed battery capacity, n 
is the number of years from the initial year, 𝑎𝑎 is the growth rate 
determined by statistical data from research reports. Based on 
(25) and (24), the cumulated battery capacity and future price
are projected in Fig. 8. Based on the learning rate 18% from [30]
and the ultimate cost 30 $/kW from [31], the fuel cell system
price and accumulated FCHEV number are shown in Fig. 9.
C. Prognostics-enabled decision making

PDM is an emerging research area that can help increase the
durability of power sources. The health information received 
from the estimation of the present degradation state and the 
prediction for the future operating conditions is intergraded into 
making decisions in the process of selecting subsequent actions 
of power sources. In this paper, the degradation of power 
sources is estimated and the optimal control parameters of EMS 

are adjusted to achieve the optimal objective. Besides, although 
empirical degradation models of fuel cell and battery work well 
to estimate their degradation costs in their initial usages, limited 
by the dynamical operation and variable external environment, 
the empirical model cannot accurately depict the degradation 
rates in the following aging. PDM can help to overcome this 
shortcoming from empirical models. The discrepancy between 
the real-life situation and laboratory aging testing could be 
addressed. In this section, the battery and fuel cell SOHs are 
online estimated, and the empirical degradation model of fuel 
cell and battery could be updated to increase their accuracies. 

The prognostic model is very nonlinear. Therefore, a 
nonlinear filter is required. The unscented Kalman filter (UKF) 
has higher accuracy than extended Kalman filter and a lower 
computational cost than particle filter. Therefore, UKF is 
chosen to estimate the SOHs of fuel cell and battery. 
1) Fuel cell SOH: Based on [32], the resistance 𝑅𝑅𝑓𝑓𝑎𝑎  and
maximum current 𝐼𝐼𝑚𝑚  in (5) of the fuel cell model evolve
significantly along with aging. Their variations along with time
can be expressed as:

𝑅𝑅𝑓𝑓𝑎𝑎(𝑡𝑡) = 𝑅𝑅𝑓𝑓𝑎𝑎0�1 + 𝛼𝛼(𝑡𝑡)�
𝐼𝐼𝑚𝑚(𝑡𝑡) = 𝐼𝐼𝑚𝑚0�1 − 𝛼𝛼(𝑡𝑡)�
𝛼𝛼(𝑡𝑡) = ∫ 𝛽𝛽𝑚𝑚0 ⋅ 𝑑𝑑𝑡𝑡

 (26) 

where 𝑅𝑅𝑓𝑓𝑎𝑎0  and 𝐼𝐼𝑚𝑚0  are initial resistance and maximum 
allowed current, 𝛼𝛼(𝑡𝑡)  is the degradation degree, 𝛽𝛽  is the 
degradation rate. Based on the imputed current and measured 
voltage values, UKF can jointly estimate 𝛼𝛼 and 𝛽𝛽. The fuel cell 
SOH can be estimated through 

𝑆𝑆𝛥𝛥ℎ𝑓𝑓𝑎𝑎(𝑡𝑡) =  𝛼𝛼 (𝑚𝑚)
𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚

 (27) 
where 𝛼𝛼𝑚𝑚𝑎𝑎𝑎𝑎 is the maximum degradation degree corresponding 
to the 10% voltage decrease. 

Fig. 7. Future hydrogen cost relative time 

Fig. 8. Cumulated battery capacity and price along with time 

Fig. 9. Cumulated FCHVE number and fuel cell system price along with time 
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Fuel cell degradation under variable loads is used to verify 
the effectiveness of the online prognostic model. The fuel cell 
current profile and results of fuel cell output voltage through 
UKF are shown in Fig. 10. The corresponding simulated and 
estimated degradation parameters are shown in Fig. 11. It can 
be observed that online prognostic can precisely estimate the 
fuel cell voltage and degradation parameters. 

2) Battery SOH: The degradation parameters of battery
model: maximum charge of battery 𝑞𝑞𝑚𝑚𝑎𝑎𝑎𝑎, battery resistance 𝑅𝑅 
and the diffusion rate 𝐷𝐷 are taken as the state parameters of the 
prognostic model. Their change rates of these parameters along 
with battery current 𝐼𝐼𝑏𝑏𝑎𝑎 can be expressed as: 

𝑞𝑞𝑚𝑚𝑎𝑎𝑎𝑎′ = 𝑤𝑤𝑞𝑞|𝐼𝐼𝑏𝑏𝑎𝑎|
𝑅𝑅′ = 𝑤𝑤𝑅𝑅|𝐼𝐼𝑏𝑏𝑎𝑎|
𝐷𝐷′ = 𝑤𝑤𝐷𝐷|𝐼𝐼𝑏𝑏𝑎𝑎|

 (28) 

where 𝑤𝑤𝑞𝑞, 𝑤𝑤𝑅𝑅 and 𝑤𝑤𝐷𝐷 are aging rate parameters. 
Based on the UKF, the charge/discharging battery current 

and observed voltages, these state parameters can be estimated. 
The SOH of the battery can be estimated through 

𝑆𝑆𝛥𝛥ℎ𝑏𝑏𝑎𝑎(𝑡𝑡) =  𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚)
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑛𝑛𝑟𝑟  (29) 

where 𝑞𝑞𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑐𝑐𝑚𝑚  is the initial maximum charge. 
The experimental test data under random charge/discharge 

current profile is used to test the online prognostic algorithm. 
The battery voltages, estimated 𝑞𝑞𝑚𝑚𝑎𝑎𝑎𝑎 and corresponding 𝑄𝑄𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠 
from UKF are shown in Fig. 12 and Fig. 13. It can be observed 
that online prognostic can precisely estimate the battery voltage 
and degradation parameters. 
D. OCMS based on decision making framework

Based on the DPRDM model, the real driving situation can
be recognized as corresponding driving patterns. Based on the 
PPDM, the prices of hydrogen, fuel cell and battery for the 
following decades can be projected. Based on the PDM, the 
SOHs and degradation parameters of fuel cell and battery can 
be precisely estimated. These important factors affect the 
charging sustaining of battery and optimal cost results, 
therefore the optimal control parameter: ECF of CMS is offline 
optimized by GA based on decision making framework to be 
used in the online application of CMS on vehicles, defined as 
OCMS. 

V.  VALIDATION AND RESULT ANALYSIS
Variable driving cycles, health states, and prices can 

compose many situations. The validation of OCMS is 
conducted under the Combined UDDS and UNIF01 driving 
cycles (CUU). Three degradation conditions of fuel cell and 
battery (D1, D2, and D3) and three price conditions on the year 
2020, 2025 and 2030 (P1, P2, and P3) are chosen as the 
examples of different aging states and prices. Three situations 
under the CUU driving cycle are set as situation 1 (S1) under 
D1 and P1, situation 2 (S2) under D2 and P2, and situation 3 
(S3) under D3 and P3, shown in Table III. The optimal ECFs 
for three situations under six typical driving cycles (from 1 to 6) 
can be got through GA as Table IV. 

Based on the optimal ECFs under different situations, the 
ECFs can be automatically adjusted through the decision 
making framework to seek for the optimal results on the overall 
cost and the charging sustaining. Based on the DPRDM, the 

driving pattern of the CUU driving cycle can be recognized as 
Fig. 14. Two-time factors for the DPRDM combined with the 
moving windows should be mentioned for the recognition 
process. Time length of moving horizon for historical data to 
identify the current driving pattern and the duration of output 
recognized pattern are set 60s and 10s respectively. Once the 
pattern of the driving cycle is obtained, the corresponding ECF 
is selected from the pre-optimized library until the next 
prediction time.  

The comparative simulation results for CMS with constant 
ECF labeled as CMS and OCMS with adaptive ECF under 
three situations are shown in Table V. It should be mentioned 
that in order to make a fair comparison, in addition to the 
overall cost at the end of the driving cycle, the final battery 
SOC variation should also be considered in the overall cost 

Fig. 10. Fuel cell current and voltages. 

Fig. 11. Degradation parameter α and β. 

Fig. 12. Estimated and measured battery voltages through UKF. 

Fig. 13. Maximum charge and charge loss along with battery degradation. 
TABLE III 

THE SIMULATION SITUATIONS. 
States Degradation Prices 

𝑆𝑆𝛥𝛥ℎ𝑓𝑓𝑎𝑎 𝑆𝑆𝛥𝛥ℎ𝑏𝑏𝑎𝑎 𝜙𝜙ℎ2 
($/kg) 

𝜙𝜙𝑓𝑓𝑎𝑎 
$/kW 

𝜙𝜙𝑏𝑏𝑎𝑎 
($/kWh) 

S1 D1 1 1 P1 5.32 70.41 256 
S2 D2 0.5 0.5 P2 5.05 37.00 173 
S3 D3 0.1 0.1 P3 5.03 29.84 117 

TABLE IV 
THE OPTIMAL ECFS FOR SIX DRIVING CYCLES UNDER THREE SITUATIONS. 

1 2 3 4 5 6 
S1 0.621 9.632 1.214 16.502 18.042 2.207 
S2 1.453 6.620 10.382 8.988 11.333 3.528 
S3 0.200 5.931 7.236 9.799 10.488 11.790 
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through the added battery sustaining charging cost in (17). It 
can be observed compared to CMS (ECF=0.621), that overall 
costs of OCMS have increased 0.9%, 1.9% and 15% for S1, S2, 
and S3 respectively. The charge sustaining of battery is well 
respected by OCMS through observed similar SOC at the end 
of the driving cycle, but this objective is not achieved by CMS. 
The decreasing overall costs from S1 to S3 are due to the 
reduced prices of hydrogen, fuel cell and battery along with 
time. 

The hydrogen consumption cost, fuel cell lifetime cost, 
battery lifetime cost, overall cost, and battery SOC along with 
the driving cycle under S1 for OCMS are shown in Fig. 15. The 
battery degradation cost is the largest, compared to hydrogen 
and fuel cell degradation. Battery SOC is also in a limited 
range. The power splits along with the driving cycle under S1 
for OCMS are shown in Fig. 16. The fuel cell mostly operates at 
low power. The dynamical variation of load power is largely 
supplied by battery. Fuel cell and battery also both work in the 
limited power range. 

VI. DRIVING, DEGRADATION AND PRICING
IMPACT 

In the above section, the optimization results of three 
situations are analyzed and the validation of OCMS is proved. 
In this section, the sensitivity analysis of driving, degradation, 
and pricing scenarios on the final optimization results is 
elucidated. 
A. Driving impact

In addition to CUU driving cycle, another two driving cycles
i.e., LA92 and SC03 driving cycle with the same degradation
and pricing state (D1 and P1 in Table III) are considered. The
optimization results of the classification, power split and
battery SOC are shown in Fig. 17. The driving time and
distance of LA92 and SC03 driving cycle are 1435s, 15.8 km
and 600s, 5.76 km, respectively, leading to two-time scale
optimization results in Fig. 17. It can be observed that the fuel
cell and battery both work normally to meet the speed
requirement of the driving cycle. The battery SOCs are also in
the limited range. The validation of the SVM classification and
OCMS is proved through different driving cycles.

Through the comparison of validations under three driving 
cycles, the effects of driving cycles on the operating cost can be 
observed. The comparison of optimal costs of hydrogen, fuel 
cell and battery lifetime cost in $/km are shown in Fig. 18. It 
can be observed that the SC03 driving cycle has the highest 
overall cost, about 1 $/km (increases 34.04% compared to the 
CUU driving cycle). The expanse of the LA92 driving cycle is 
similar to the CUU driving cycle. The fuel cell lifetime cost 
takes the largest share over three cycles, due to its short lifetime 
and high price. 
B. Degradation impact

The degradation impact on the optimal costs under the same
price state (P1) and CUU driving cycle are examined. The cost 
results under three degradation states (D1, D2 and D3 in Table 
III) are shown in Fig. 19.

It can be observed that the OCMS under D3 has the least
overall cost of 27.88 $ (9.5% and 8.8% reductions versus D2 
and D1 respectively). Along with the degradation of fuel cell 
and battery, the overall cost has a slight increase firstly from D1 

to D2 and then decreases to the least value. The difference 
between D1 and D2 over the lifetime costs of the fuel cell and 
battery is very small. The final battery SOC of D1 and D2 are 
0.8 and 0.77 respectively, which is the main reason for the 
difference in overall cost. The degradation of power sources 
from D2 to D3 leads to the more frequent utilization of fuel cell 
and the decrease of battery lifetime cost and overall cost. 
C. Pricing impact

The pricing impact of hydrogen, fuel cell, and battery are
analyzed under the same driving cycle (CUU driving cycle) and 
degradation state (D1). The optimization results under different 
pricing states (P1, P2 and P3 in Table III) are shown in Fig. 20. 

Based on the hydrogen price model, the hydrogen price will 
decrease by 5% from P1 to P2 and the hydrogen price of P2 is 
almost equal to P3. The fuel cell and battery prices will 

Fig. 14. Driving pattern recognition results for the CUU driving cycle 
TABLE V 

COMPARATIVE RESULTS FOR EMSS UNDER THREE DIFFERENT SITUATIONS 
S1 S2 S3 

CMS OCMS CMS OCMS CMS OCMS 
Overall cost ($) 30.85 30.57 21.64 21.23 16.37 13.90 
Fuel cell 
lifetime cost ($) 8.33 9.19 4.95 5.13 3.60 4.54 

Battery lifetime 
cost ($) 19.64 18.54 13.49 13.24 9.68 6.36 

Hydrogen cost 
($) 2.88 2.84 3.2 2.86 3.09 3.00 

Battery soc 0.740 0.800 0.728 0.799 0.695 0.788 
 

Fig. 15. Optimal cost and battery SOC 

Fig. 16. Optimal power split 



gradually decrease along with the year. It can be obviously 
observed the gradual decrease in overall cost. Compared to P1, 
the decrease has reached 37.2% and 57% respectively for P2 
and P3, due to the prices decrease. Along with the decreasing 
trend of hydrogen and power sources prices, the FCHEVS 
under the designed OCMS will be more competitive to the 
vehicles with an internal combustion engine. 

VII. CONCLUSION
This paper developed a cost optimal, decision making 

energy management strategy considering the fuel cell and 
battery lifetimes and the uncertainness on the driving pattern, 
degradation states of power sources, and prices of fuel and 
drivetrain components. The overall cost including the 
hydrogen cost, fuel cell and battery degradation cost was 
minimized. The decision making framework was built to 
supply optimal equivalent cost factors at all kinds of situations 
on the driving pattern, health state and price. Simulation 
results proved that the optimal cost and charger sustaining of 
battery were achieved through the cooperation between CMS 
and decision making framework composing the OCMS.  
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