58 research outputs found

    Deep learning for brain disorders: from data processing to disease treatment

    Get PDF
    International audienceIn order to reach precision medicine and improve patients' quality of life, machine learning is increasingly used in medicine. Brain disorders are often complex and heterogeneous, and several modalities such as demographic, clinical, imaging, genetics and environmental data have been studied to improve their understanding. Deep learning, a subpart of machine learning, provides complex algorithms that can learn from such various data. It has become state of the art in numerous fields, including computer vision and natural language processing, and is also growingly applied in medicine. In this article, we review the use of deep learning for brain disorders. More specifically, we identify the main applications, the concerned disorders and the types of architectures and data used. Finally, we provide guidelines to bridge the gap between research studies and clinical routine

    Transfer learning from synthetic to routine clinical data for motion artefact detection in brain T1-weighted MRI

    Get PDF
    International audienceClinical data warehouses (CDWs) contain the medical data of millions of patients and represent a great opportunity to develop computational tools. MRIs are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are unusable because corrupted by these artefacts. Since their manual detection is impossible due to the number of scans, it is necessary to develop a tool to automatically exclude images with motion in order to fully exploit CDWs. In this paper, we propose a CNN for the automatic detection of motion in 3D T1-weighted brain MRI. Our transfer learning approach, based on synthetic motion generation, consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the manual labelling of 5500 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy>80%). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and to highlight the importance of a clinical validation of models trained on research data

    Predicting progression to Alzheimer’s disease from clinical and imaging data: a reproducible study

    Get PDF
    International audienceVarious machine learning approaches have been developed for predicting progression to Alzheimer’s disease (AD) in patients with mild cognitive impairment (MCI) from MRI and PET data. Objective comparison of these approaches is nearly impossible because of differences at all steps, from data management to image processing and evaluation procedures. Moreover, with a few exceptions, these papers rarely compare their results to that obtained with clinical/cognitive data only, a critical point to demonstrate the practical utility of neuroimaging in this context. We previously proposed a framework for the reproducible evaluation of ML algorithms for AD classification. This framework was applied to AD classification using unimodal neuroimaging data (T1 MRI and FDG PET). Here, we extend our previous work to the combination of multimodal clinical and neuroimaging data for predicting progression to AD among MCI patients. All the code is publicly available at: https://github.com/aramis-lab/AD-ML

    Three simple ideas for predicting progression to Alzheimer's disease

    Get PDF
    International audienceIn spite of the amount of research done in the prediction of the progression of mild cognitive impaired (MCI) subjects to Alzheimer's disease (AD), there is still room for further improvement. Sophisticated methods have been proposed, some reaching classification accuracies of up to 85%. In the present paper, we propose a combination of simple ideas to determine if they allow to obtain similar accuracies when predicting MCI to AD conversion. We present three approaches making use of ADNI database. We set a performance baseline using only demographic and clinical data (gender, education level, APOE4, MMSE, CDR sum of boxes, ADASCog) that provides a balanced accuracy of 76% (AUC of 0.84). When using imaging data, an important finding is that when an SVM is trained for discriminating between cognitive normal (CN) subjects and AD patients, and the resulting classifier is applied to MCI subjects to predict conversion, performance using FDG PET data improves to 76% of balanced accuracy and an AUC of 0.82. The third approach, consisting of multimodal data, namely the combination of the scores obtained from SVM for T1w and FDG PET data, and the demographic and clinical data, provided the best prediction results (80% balanced accuracy, AUC of 0.88). These prediction accuracies, resulting from the combination simple ideas, are in line with state-of-the-art results, and provide a new baseline to compare more sophisticated methods against. All the code of the framework and the experiments will be publicly available at https://gitlab.icm-institute.org/aramislab/AD-ML

    Predicting the Progression of Mild Cognitive Impairment Using Machine Learning: A Systematic and Quantitative Review

    Get PDF
    Context. Automatically predicting if a subject with Mild Cognitive Impairment (MCI) is going to progress to Alzheimer's disease (AD) dementia in the coming years is a relevant question regarding clinical practice and trial inclusion alike. A large number of articles have been published, with a wide range of algorithms, input variables, data sets and experimental designs. It is unclear which of these factors are determinant for the prediction, and affect the predictive performance that can be expected in clinical practice. We performed a systematic review of studies focusing on the automatic prediction of the progression of MCI to AD dementia. We systematically and statistically studied the influence of different factors on predictive performance. Method. The review included 172 articles, 93 of which were published after 2014. 234 experiments were extracted from these articles. For each of them, we reported the used data set, the feature types (defining 10 categories), the algorithm type (defining 12 categories), performance and potential methodological issues. The impact of the features and algorithm on the performance was evaluated using t-tests on the coefficients of mixed effect linear regressions. Results. We found that using cognitive, fluorodeoxyglucose-positron emission tomog-raphy or potentially electroencephalography and magnetoencephalography variables significantly improves predictive performance compared to not including them (p=0.046, 0.009 and 0.003 respectively), whereas including T1 magnetic resonance imaging, amyloid positron emission tomography or cerebrospinal fluid AD biomarkers does not show a significant effect. On the other hand, the algorithm used in the method does not have a significant impact on performance. We identified several methodological issues. Major issues, found in 23.5% of studies, include the absence of a test set, or its use for feature selection or parameter tuning. Other issues, found in 15.0% of studies, pertain to the usability of the method in clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. Finally, we highlight possible biases in publications that tend not to publish methods with poor performance on large data sets, which may be censored as negative results. Conclusion. Using machine learning to predict MCI to AD dementia progression is a promising and dynamic field. Among the most predictive modalities, cognitive scores are the cheapest and less invasive, as compared to imaging. The good performance they offer question the wide use of imaging for predicting diagnosis evolution, and call for further exploring fine cognitive assessments. Issues identified in the studies highlight the importance of establishing good practices and guidelines for the use of machine learning as a decision support system in clinical practice

    An Automated Pipeline for the Analysis of PET Data on the Cortical Surface

    Get PDF
    We present a fully automatic pipeline for the analysis of PET data on the cortical surface. Our pipeline combines tools from FreeSurfer and PETPVC, and consists of (i) co-registration of PET and T1-w MRI (T1) images, (ii) intensity normalization, (iii) partial volume correction, (iv) robust projection of the PET signal onto the subject's cortical surface, (v) spatial normalization to a template, and (vi) atlas statistics. We evaluated the performance of the proposed workflow by performing group comparisons and showed that the approach was able to identify the areas of hypometabolism characteristic of different dementia syndromes: Alzheimer's disease (AD) and both the semantic and logopenic variants of primary progressive aphasia. We also showed that these results were comparable to those obtained with a standard volume-based approach. We then performed individual classifications and showed that vertices can be used as features to differentiate cognitively normal and AD subjects. This pipeline is integrated into Clinica, an open-source software platform for neuroscience studies available at www.clinica.run
    corecore