11 research outputs found

    The Polyphosphate Kinase of Escherichia coli Is Required for Full Production of the Genotoxin Colibactin

    No full text
    International audienceColibactin induces DNA damage in mammalian cells and has been linked to the virulence of Escherichia coli and the promotion of colorectal cancer (CRC). By looking for mutants attenuated in the promoter activity of clbB encoding one of the key enzymes for the production of colibactin, we found that a mutant of the gene coding for the polyphosphate kinase (PPK) produced less colibactin than the parental strain. We observed this phenotype in different strains ranging from pathogens responsible for meningitis, urinary tract infection, or mouse colon carcinogenesis to the probiotic Nissle 1917. We confirmed the role of PPK by using an inhibitor of PPK enzymatic activity, mesalamine (also known as 5-aminosalicylic acid). Interestingly, mesalamine has a local anti-inflammatory effect on the epithelial cells of the colon and is used to treat inflammatory bowel disease (IBD). Upon treatment with mesalamine, a decreased genotoxicity of colibactin-producing E. coli was observed both on epithelial cells and directly on purified DNA. This demonstrates the direct effect of mesalamine on bacteria independently from its anti-inflammatory effect on eukaryotic cells. Our results suggest that the mechanisms of action of mesalamine in treating IBD and preventing CRC could also lie in the inhibition of colibactin production. All in all, we demonstrate that PPK is required for the promoter activity of clbB and the production of colibactin, which suggests that PPK is a promising target for the development of anticolibactin and antivirulence strategies.IMPORTANCE Colibactin-producing E. coli induces DNA damage in eukaryotic cells and promotes tumor formation in mouse models of intestinal inflammation. Recent studies have provided strong evidence supporting the causative role of colibactin in human colorectal cancer (CRC) progression. Therefore, it is important to understand the regulation of the production of this genotoxin. Here, we demonstrate that polyphosphate kinase (PPK) is required for the promoter activity of clbB and the production of colibactin. Interestingly, PPK is a multifunctional player in bacterial virulence and stress responses and has been proposed as a new target for developing antimicrobial medicine. We observed inhibition of colibactin production by using a previously identified PPK inhibitor (i.e., mesalamine, an anti-inflammatory drug commonly prescribed for inflammatory bowel diseases). These data brought us a new perspective on the regulatory network of colibactin production and provided us a clue for the development of anticolibactin strategies for CRC treatment/prophylaxis

    Escherichia coliClbS is a colibactin resistance protein

    No full text
    International audienceThe genomic pks island codes for the biosynthetic machinery that produces colibactin, a peptide-polyketide metabolite. Colibactin is a genotoxin that contributes to the virulence of extra-intestinal pathogenic Escherichia coli and promotes colorectal cancer. In this work, we examined whether the pks-encoded clbS gene of unknown function could participate in the self-protection of E. coli-producing colibactin. A clbS mutant was not impaired in the ability to inflict DNA damage in HeLa cells, but the bacteria activated the SOS response and ceased to replicate. This autotoxicity phenotype was markedly enhanced in a clbSuvrB double mutant inactivated for DNA repair by nucleotide excision but was suppressed in a clbSclbA double mutant unable to produce colibactin. In addition, ectopic expression of clbS protected infected HeLa cells from colibactin. Thus, ClbS is a resistance protein blocking the genotoxicity of colibactin both in the procaryotic and the eucaryotic cells

    Development of a Multiple-Locus Variable-Number Tandem-Repeat Typing Scheme for Genetic Fingerprinting of Burkholderia cenocepacia and Application to Nationwide Epidemiological Analysis

    No full text
    International audienceOrganisms of the Burkholderia cepacia complex are especially important pathogens in cystic fibrosis (CF), with a propensity for patient-to-patient spread and long-term respiratory colonization. B. cenocepacia and Burkholderia multivorans account for the majority of infections in CF, and major epidemic clones have been recognized throughout the world. The aim of the present study was to develop and evaluate a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) scheme for B. cenoce-pacia. Potential VNTR loci were identified upon analysis of the annotated genome sequences of B. cenocepacia strains AU1054, J2315, and MCO-3, and 10 of them were selected on the basis of polymorphisms and size. A collection of 100 B. cenocepacia strains, including epidemiologically related and unrelated strains, as well as representatives of the major epidemic lineages, was used to evaluate typeability, epidemiological concordance, and the discriminatory power of MLVA-10 compared with those of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Longitudinal stability was assessed by testing 39 successive isolates from 14 patients. Typeability ranged from 0.91 to 1, except for that of one marker, which was not amplified in 53% of the B. cenocepacia IIIA strains. The MLVA types were shown to be stable in chronically colonized patients and within outbreak-related strains, with excellent epidemiological concordance. Epidemic and/or globally distributed lineages (epidemic Edinburgh-Toronto electrophoretic type 12 [ET-12], sequence type 32 [ST-32], ST-122, ST-234, and ST-241) were successfully identified. Conversely, the discriminatory power of MLVA was lower than that of PFGE or MLST, although PFGE variations within the epidemic lineages sometimes masked their genetic relatedness. In conclusion, MLVA represents a promising cost-effective first-line tool in B. cenocepacia surveillance

    The Polyamine Spermidine Modulates the Production of the Bacterial Genotoxin Colibactin

    No full text
    Colibactin is a polyketide/nonribosomal peptide produced by Escherichia coli strains that harbor the pks island. This toxin induces DNA double-strand breaks and DNA interstrand cross-links in infected eukaryotic cells. Colibactin-producing strains are found associated with colorectal cancer biopsy specimens and promote intestinal tumor progression in various murine models. Polyamines are small polycationic molecules produced by both microorganisms and eukaryotic cells. Their levels are increased in malignancies, where they contribute to disease progression and metastasis. In this study, we demonstrated that the endogenous spermidine synthase SpeE is required for full genotoxic activity of colibactin-producing E. coli. Supplying spermidine in a ΔspeE pks+ E. coli strain restored genotoxic activity. Spermidine is involved in the autotoxicity linked to colibactin and is required for direct damaging activity on DNA. The production of the colibactin prodrug motif is impaired in ΔspeE mutants. Therefore, we demonstrated that spermidine has a direct impact on colibactin synthesis

    Uncoupling the Hsp90 and DnaK chaperone activities revealed the in vivo relevance of their collaboration in bacteria

    No full text
    International audienceChaperone proteins are essential in all living cells to ensure protein homeostasis. Hsp90 is a major adenosine triphosphate (ATP)-dependent chaperone highly conserved from bacteria to eukaryotes. Recent studies have shown that bacterial Hsp90 is essential in some bacteria in stress conditions and that it participates in the virulence of pathogenic bacteria. In vitro, bacterial Hsp90 directly interacts and collaborates with the Hsp70 chaperone DnaK to reactivate model substrate proteins; however, it is still unknown whether this collaboration is relevant in vivo with physiological substrates. Here, we used site-directed mutagenesis on Hsp90 to impair DnaK binding, thereby uncoupling the chaperone activities. We tested the mutants in vivo in two bacterial models in which Hsp90 has known physiological functions. We found that the Hsp90 point mutants were defective to support (1) growth under heat stress and activation of an essential Hsp90 client in the aquatic bacterium Shewanella oneidensis and (2) biosynthesis of the colibactin toxin involved in the virulence of pathogenic Escherichia coli . Our study therefore demonstrates the essentiality of the direct collaboration between Hsp90 and DnaK in vivo in bacteria to support client folding. It also suggests that this collaboration already functional in bacteria has served as an evolutionary basis for a more complex Hsp70–Hsp90 collaboration found in eukaryotes

    A Toxic Friend: Genotoxic and Mutagenic Activity of the Probiotic Strain Escherichia coli Nissle 1917

    No full text
    International audienceThe probiotic Escherichia coli strain Nissle 1917 (DSM 6601, Mutaflor), generally considered beneficial and safe, has been used for a century to treat various intestinal diseases. However, Nissle 1917 hosts in its genome the pks pathogenicity island that codes for the biosynthesis of the genotoxin colibactin. Colibactin is a potent DNA alkylator, suspected to play a role in colorectal cancer development. We show in this study that Nissle 1917 is functionally capable of producing colibactin and inducing interstrand cross-links in the genomic DNA of epithelial cells exposed to the probiotic. This toxicity was even exacerbated with lower doses of the probiotic, when the exposed cells started to divide again but exhibited aberrant anaphases and increased gene mutation frequency. DNA damage was confirmed in vivo in mouse models of intestinal colonization, demonstrating that Nissle 1917 produces the genotoxin in the gut lumen. Although it is possible that daily treatment of adult humans with their microbiota does not produce the same effects, administration of Nissle 1917 as a probiotic or as a chassis to deliver therapeutics might exert long-term adverse effects and thus should be considered in a risk-versus-benefit evaluation. IMPORTANCE Nissle 1917 is sold as a probiotic and considered safe even though it has been known since 2006 that it harbors the genes for colibactin synthesis. Colibactin is a potent genotoxin that is now linked to causative mutations found in human colorectal cancer. Many papers concerning the use of this strain in clinical applications ignore or elude this fact or misleadingly suggest that Nissle 1917 does not induce DNA damage. Here, we demonstrate that Nissle 1917 produces colibactin in vitro and in vivo and induces mutagenic DNA damage. This is a serious safety concern that must not be ignored in the interests of patients, the general public, health care professionals, and ethical probiotic manufacturers

    A Toxic Friend: Genotoxic and Mutagenic Activity of the Probiotic Strain Escherichia coli Nissle 1917

    No full text
    International audienceThe probiotic Escherichia coli strain Nissle 1917 (DSM 6601, Mutaflor), generally considered beneficial and safe, has been used for a century to treat various intestinal diseases. However, Nissle 1917 hosts in its genome the pks pathogenicity island that codes for the biosynthesis of the genotoxin colibactin. Colibactin is a potent DNA alkylator, suspected to play a role in colorectal cancer development. We show in this study that Nissle 1917 is functionally capable of producing colibactin and inducing interstrand cross-links in the genomic DNA of epithelial cells exposed to the probiotic. This toxicity was even exacerbated with lower doses of the probiotic, when the exposed cells started to divide again but exhibited aberrant anaphases and increased gene mutation frequency. DNA damage was confirmed in vivo in mouse models of intestinal colonization, demonstrating that Nissle 1917 produces the genotoxin in the gut lumen. Although it is possible that daily treatment of adult humans with their microbiota does not produce the same effects, administration of Nissle 1917 as a probiotic or as a chassis to deliver therapeutics might exert long-term adverse effects and thus should be considered in a risk-versus-benefit evaluation. IMPORTANCE Nissle 1917 is sold as a probiotic and considered safe even though it has been known since 2006 that it harbors the genes for colibactin synthesis. Colibactin is a potent genotoxin that is now linked to causative mutations found in human colorectal cancer. Many papers concerning the use of this strain in clinical applications ignore or elude this fact or misleadingly suggest that Nissle 1917 does not induce DNA damage. Here, we demonstrate that Nissle 1917 produces colibactin in vitro and in vivo and induces mutagenic DNA damage. This is a serious safety concern that must not be ignored in the interests of patients, the general public, health care professionals, and ethical probiotic manufacturers

    Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917

    No full text
    International audienceAlthough Escherichia coli Nissle 1917 (EcN) has been used therapeutically for over a century, the determinants of its probiotic properties remain elusive. EcN produces two siderophore-microcins (Mcc) responsible for an antagonistic activity against other Enterobacteriaceae. EcN also synthesizes the genotoxin colibactin encoded by the pks island. Colibactin is a virulence factor and a putative pro-carcinogenic compound. Therefore, we aimed to decouple the antagonistic activity of EcN from its genotoxic activity. We demonstrated that the pks-encoded ClbP, the peptidase that activates colibactin, is required for the antagonistic activity of EcN. The analysis of a series of ClbP mutants revealed that this activity is linked to the transmembrane helices of ClbP and not the periplasmic peptidase domain, indicating the transmembrane domain is involved in some aspect of Mcc biosynthesis or secretion. A single amino acid substitution in ClbP inactivates the genotoxic activity but maintains the antagonistic activity. In an in vivo salmonellosis model, this point mutant reduced the clinical signs and the fecal shedding of Salmonella similarly to the wild type strain, whereas the clbP deletion mutant could neither protect nor outcompete the pathogen. The ClbP-dependent antibacterial effect was also observed in vitro with other E. coli strains that carry both a truncated form of the Mcc gene cluster and the pks island. In such strains, siderophore-Mcc synthesis also required the glucosyltransferase IroB involved in salmochelin production. This interplay between colibactin, salmochelin, and siderophore-Mcc biosynthetic pathways suggests that these genomic islands were co-selected and played a role in the evolution of E. coli from phylogroup B2. This co-evolution observed in EcN illustrates the fine margin between pathogenicity and probiotic activity, and the need to address both the effectiveness and safety of probiotics. Decoupling the antagonistic from the genotoxic activity by specifically inactivating ClbP peptidase domain opens the way to the safe use of EcN

    Uropathogenic E. coli induces DNA damage in the bladder

    No full text
    Urinary tract infections (UTIs) are among the most common outpatient infections, with a lifetime incidence of around 60% in women. We analysed urine samples from 223 patients with community-acquired UTIs and report the presence of a metabolite released during the synthesis of colibactin, a bacterial genotoxin, in 50 of the samples examined. Uropathogenic Escherichia coli strains isolated from these patients, as well as the archetypal E. coli strain UTI89, were found to produce colibactin. In a murine model of UTI, the machinery producing colibactin was expressed during the early hours of the infection, when intracellular bacterial communities form. We observed extensive DNA damage both in umbrella and bladder progenitor cells. To the best of our knowledge this is the first report of colibactin production in UTIs in humans and its genotoxicity in bladder cells. This bacterial genotoxin, which is increasingly suspected to promote colorectal cancer, should also be scrutinised in the context of bladder cancer

    Erratum for Wallenstein et al., “ClbR Is the Key Transcriptional Activator of Colibactin Gene Expression in <named-content content-type="genus-species">Escherichia coli</named-content>”

    No full text
    Colibactin is a nonribosomal peptide/polyketide hybrid natural product expressed by different members of the Enterobacteriaceae which can be correlated with induction of DNA double-strand breaks and interference with cell cycle progression in eukaryotes. Regulatory features of colibactin expression are only incompletely understood. We used Escherichia coli strain M1/5 as a model to investigate regulation of expression of the colibactin determinant at the transcriptional level and to characterize regulatory elements located within the colibactin pathogenicity island itself. We measured clbR transcription in vitro and observed that cultivation in defined minimal media led to increased colibactin expression relative to rich media. Transcription of clbR directly responds to iron availability. We also characterized structural DNA elements inside the colibactin determinant involved in ClbR-dependent regulation, i.e., ClbR binding sites and a variable number of tandem repeats located upstream of clbR. We investigated the impact of clbR overexpression or deletion at the transcriptome and proteome levels. Moreover, we compared global gene regulation under these conditions with that occurring upon overexpression or deletion of clbQ, which affects the flux of colibactin production. Combining the results of the transcriptome and proteome analyses with indirect measurements of colibactin levels by cell culture assays and an approximate quantification of colibactin via the second product of colibactin cleavage from precolibactin, N-myristoyl-d-asparagine, we demonstrate that the variable number of tandem repeats plays a significant regulatory role in colibactin expression. We identify ClbR as the only transcriptional activator known so far that is specific and essential for efficient regulation of colibactin production.IMPORTANCE The nonribosomal peptide/polyketide hybrid colibactin can be considered a bacterial virulence factor involved in extraintestinal infection and also a procarcinogen. Nevertheless, and despite its genotoxic effect, colibactin expression can also inhibit bacterial or tumor growth and correlates with probiotic anti-inflammatory and analgesic properties. Although the biological function of this natural compound has been studied extensively, our understanding of the regulation of colibactin expression is still far from complete. We investigated in detail the role of regulatory elements involved in colibactin expression and in the growth conditions that promote colibactin expression. In this way, our data shed light on the regulatory mechanisms involved in colibactin expression and may support the expression and purification of this interesting nonribosomal peptide/polyketide hybrid for further molecular characterization
    corecore