293 research outputs found

    Rare variants in IFFO1, DTNB, NLRC3 and SLC22A10 associate with Alzheimer's disease CSF profile of neuronal injury and inflammation

    Full text link
    Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (β-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development

    Detection of primary Sjögren's syndrome in primary care: developing a classification model with the use of routine healthcare data and machine learning

    Get PDF
    Background: Primary Sjögren's Syndrome (pSS) is a rare autoimmune disease that is difficult to diagnose due to a variety of clinical presentations, resulting in misdiagnosis and late referral to specialists. To improve early-stage disease recognition, this study aimed to develop an algorithm to identify possible pSS patients in primary care. We built a machine learning algorithm which was based on combined healthcare data as a first step towards a clinical decision support system. Method: Routine healthcare data, consisting of primary care electronic health records (EHRs) data and hospital claims data (HCD), were linked on patient level and consisted of 1411 pSS and 929,179 non-pSS patients. Logistic regression (LR) and random forest (RF) models were used to classify patients using age, gender, diseases and symptoms, prescriptions and GP visits. Results: The LR and RF models had an AUC of 0.82 and 0.84, respectively. Many actual pSS patients were found (sensitivity LR = 72.3%, RF = 70.1%), specificity was 74.0% (LR) and 77.9% (RF) and the negative predictive value was 99.9% for both models. However, most patients classified as pSS patients did not have a diagnosis of pSS in secondary care (positive predictive value LR = 0.4%, RF = 0.5%). Conclusion: This is the first study to use machine learning to classify patients with pSS in primary care using GP EHR data. Our algorithm has the potential to support the early recognition of pSS in primary care and should be validated and optimized in clinical practice. To further enhance the algorithm in detecting pSS in primary care, we suggest it is improved by working with experienced clinicians

    Adaptive nonlinear fringe-adjusted joint transform correlator

    Full text link
    International audienceAn optimized technique based on the fringe-adjustedJTC (joint transform correlator) architecture is proposed and validated for rotation invariant recognition and tracking of a target in an unknown input scene. To enhance the robustness of the proposed technique, we used a three-step optimization by: (1) utilizing the fringe-adjusted filter (HFAF) in the Fourier plane, (2) adding nonlinear processing in the Fourier plane, and (3) using a new decision criterion in the correlation plane by considering the correlation peak energy and the highest peaks outside the desired correlation peak. Several tests were conducted to reduce the number of reference images needed for fast tracking while ensuring robust discrimination and efficient tracking of thedesired target. Test results obtained using the PHPID (Pointing Head Pose Image Database) data baseconfirm robust performance of the proposed method for face recognition and tracking applications. Thereafter, we also tested the proposed technique for a challenging application i.e. underwater mine detection and excellent results were obtained

    Comparison of methods to identify and characterize Post-COVID syndrome using electronic health records and questionnaires

    Get PDF
    Background: Some of those infected with coronavirus suffer from post-COVID syndrome (PCS). However, an uniform definition of PCS is lacking, causing uncertainty about the prevalence and nature of this syndrome. We aim to improve understanding by operationalizing different definitions of PCS in different data sources and describing features and clinical subtypes.Methods: We use different methods and data sources. First, a cohort with electronic health records (EHR) from general practices (GPs) and GP out-of-hours-services combined with sociodemographic data for n≈1.000.000 individuals. Second, questionnaires among n=276 individuals who had been infected with coronavirus. Using both data sources, we operationalized definitions of PCS to calculate frequency and characteristics. In a subgroup of the EHR data we conducted community detection analyses to explore possible clinical subtypes of PCS.Results: The frequency of PCS ranged from 15-33%, depending on the method and data source. Across all methods and definitions, the mean age of individuals with PCS was around 53 years and they were more often female. There were small sex differences in the type of symptoms and overall symptoms were persistent for 6 months. Exploratory network analysis revealed three possible clinical subtypes.Discussion: We showed that frequency rates of post-COVID syndrome differ between methods and data sources, but characteristics of the affected individuals are quite stable. Overall, PCS is a heterogeneous syndrome affecting a significant group of individuals who need adequate care. Future studies should focus on care trajectories and qualitative measures such as experiences and quality of life of individuals living with PCS

    Effects of age, amyloid, sex, and APOE ε4 on the CSF proteome in normal cognition

    Get PDF
    Introduction: It is important to understand which biological processes change with aging, and how such changes are associated with increased Alzheimer's disease (AD) risk. We studied how cerebrospinal fluid (CSF) proteomics changed with age and tested if associations depended on amyloid status, sex, and apolipoprotein E Ɛ4 genotype. Methods: We included 277 cognitively intact individuals aged 46 to 89 years from Alzheimer's Disease Neuroimaging Initiative, European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery, and Metabolic Syndrome in Men. In total, 1149 proteins were measured with liquid chromatography mass spectrometry with multiple reaction monitoring/Rules-Based Medicine, tandem mass tag mass spectrometry, and SOMAscan. We tested associations between age and protein levels in linear models and tested enrichment for Reactome pathways. Results: Levels of 252 proteins increased with age independently of amyloid status. These proteins were associated with immune and signaling processes. Levels of 21 proteins decreased with older age exclusively in amyloid abnormal participants and these were enriched for extracellular matrix organization. Discussion: We found amyloid-independent and -dependent CSF proteome changes with older age, perhaps representing physiological aging and early AD pathology

    Harmonizing neuropsychological assessment for mild neurocognitive disorders in Europe

    Full text link
    INTRODUCTION Harmonized neuropsychological assessment for neurocognitive disorders, an international priority for valid and reliable diagnostic procedures, has been achieved only in specific countries or research contexts. METHODS To harmonize the assessment of mild cognitive impairment in Europe, a workshop (Geneva, May 2018) convened stakeholders, methodologists, academic, and non-academic clinicians and experts from European, US, and Australian harmonization initiatives. RESULTS With formal presentations and thematic working-groups we defined a standard battery consistent with the U.S. Uniform DataSet, version 3, and homogeneous methodology to obtain consistent normative data across tests and languages. Adaptations consist of including two tests specific to typical Alzheimer's disease and behavioral variant frontotemporal dementia. The methodology for harmonized normative data includes consensus definition of cognitively normal controls, classification of confounding factors (age, sex, and education), and calculation of minimum sample sizes. DISCUSSION This expert consensus allows harmonizing the diagnosis of neurocognitive disorders across European countries and possibly beyond

    Pathophysiological subtypes of Alzheimer's disease based on cerebrospinal fluid proteomics.

    Get PDF
    Alzheimer's disease is biologically heterogeneous, and detailed understanding of the processes involved in patients is critical for development of treatments. CSF contains hundreds of proteins, with concentrations reflecting ongoing (patho)physiological processes. This provides the opportunity to study many biological processes at the same time in patients. We studied whether Alzheimer's disease biological subtypes can be detected in CSF proteomics using the dual clustering technique non-negative matrix factorization. In two independent cohorts (EMIF-AD MBD and ADNI) we found that 705 (77% of 911 tested) proteins differed between Alzheimer's disease (defined as having abnormal amyloid, n = 425) and controls (defined as having normal CSF amyloid and tau and normal cognition, n = 127). Using these proteins for data-driven clustering, we identified three robust pathophysiological Alzheimer's disease subtypes within each cohort showing (i) hyperplasticity and increased BACE1 levels; (ii) innate immune activation; and (iii) blood-brain barrier dysfunction with low BACE1 levels. In both cohorts, the majority of individuals were labelled as having subtype 1 (80, 36% in EMIF-AD MBD; 117, 59% in ADNI), 71 (32%) in EMIF-AD MBD and 41 (21%) in ADNI were labelled as subtype 2, and 72 (32%) in EMIF-AD MBD and 39 (20%) individuals in ADNI were labelled as subtype 3. Genetic analyses showed that all subtypes had an excess of genetic risk for Alzheimer's disease (all P > 0.01). Additional pathological comparisons that were available for a subset in ADNI suggested that subtypes showed similar severity of Alzheimer's disease pathology, and did not differ in the frequencies of co-pathologies, providing further support that found subtypes truly reflect Alzheimer's disease heterogeneity. Compared to controls, all non-demented Alzheimer's disease individuals had increased risk of showing clinical progression (all P < 0.01). Compared to subtype 1, subtype 2 showed faster clinical progression after correcting for age, sex, level of education and tau levels (hazard ratio = 2.5; 95% confidence interval = 1.2, 5.1; P = 0.01), and subtype 3 at trend level (hazard ratio = 2.1; 95% confidence interval = 1.0, 4.4; P = 0.06). Together, these results demonstrate the value of CSF proteomics in studying the biological heterogeneity in Alzheimer's disease patients, and suggest that subtypes may require tailored therapy
    corecore