121 research outputs found
Il boom del Distretto del Prosecco: immagine dell'utilit\ue0 dell'inutile tra austerit\ue0 e ripresa
The industrial districts have given rise to a variety of biocultural paths, but in the post-industrial era these are continuously threatened by the trend towards product standardisation. Despite this, local districts are able to survive, albeit in a weakened state, with two possible effects: A) the risk of fading; B) the desirability of resilience. The Biocultural fingerprint of the Prosecco District (placed 3rd in the Intesa San Paolo ranking of Italian districts for 2008-2011) reveals that its clusters of municipalities are characterised by agricultural and eno-gastronomic excellence in both rural and urban contexts. Meanwhile, its tourist attractiveness index, owing to its lack of apparently "useless components" such as nature parks and protected areas, and cultural heritage, is relatively low. It follows that the marketing-image strategies devised for immediate profit appear to be insufficient at coping with the competition and ensuring a sustained level of development in the long term
Plasma-Based Longitudinal Evaluation of ESR1 Epigenetic Status in Hormone Receptor-Positive HER2-Negative Metastatic Breast Cancer
Background: Endocrine therapy (ET) is the mainstay of treatment for hormone receptor-positive human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer; however, adaptive mechanisms emerge in about 25\u201330% of cases through alterations in the estrogen receptor ligand-binding domain, with a consequent ligand-independent estrogen receptor activity. Epigenetic-mediated events are less known and potentially involved in alternative mechanisms of resistance. The aim of this study was to test the feasibility of estrogen receptor 1 (ESR1) epigenetic characterization through liquid biopsy and to show its potential longitudinal application for an early ET sensitivity assessment. Methods: A cohort of 49 women with hormone receptor-positive HER2-negative MBC was prospectively enrolled and characterized through circulating tumor DNA using methylation-specific droplet digital PCR (MS-ddPCR) before treatment start (BL) and after 3 months concomitantly with computed tomography (CT) scan restaging (EV1). ESR1 epigenetic status was defined by assessing the methylation of its main promoters (promA and promB). The most established cell-free tumor DNA (ctDNA) factors associated with ET resistance [ESR1 and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations] were assessed through next-generation sequencing. Associations were tested through Mann\u2013Whitney U test, matched pairs variations through Wilcoxon signed rank test, and survival was analyzed by log-rank test. Results: The ET backbone was mainly based on aromatase inhibitors (AIs) (70.83%) in association with CDK4/6 inhibitors (93.75%). Significantly lower promA levels at baseline were observed in patients with liver metastases (P = 0.0212) and in patients with ESR1 mutations (P = 0.0091). No significant impact on PFS was observed for promA (P = 0.3777) and promB (P = 0.7455) dichotomized at the median while a 652-fold increase in promB or in either promA or promB at EV1 resulted in a significantly worse prognosis (respectively P = 0.0189, P = 0.0294). A significant increase at EV1 was observed for promB among patients with PIK3CA mutation (P = 0.0173). A trend was observed for promB in ESR1 wild-type patients and for promA in the ESR1 mutant subgroup. Conclusion: The study proofed the concept of an epigenetic characterization strategy based on ctDNA and is capable of being integrated in the current clinical workflow to give useful insights on treatment sensitivity
Development of gamma insensitive silicon carbide diagnostics to qualify intense thermal and epithermal neutron fields
The e_LiBANS project aims at creating accelerator based compact neutron
facilities for diverse interdisciplinary applications. After the successful
setting up and characterization of a thermal neutron source based on a medical
electron LINAC, a similar assembly for epithermal neutrons has been developed.
The project is based on an Elekta 18 MV LINAC coupled with a
photoconverter-moderator system which deploys the ({\gamma},n) photonuclear
reaction to convert a bremsstrahlung photon beam into a neutron field. This
communication describes the development of novel diagnostics to qualify the
thermal and epithermal neutron fields that have been produced. In particular, a
proof of concept for the use of silicon carbide photodiodes as a thermal
neutron rate detector is presented.Comment: 10 pages, 10 figures, accepted for publication to JINST on the 17th
April 202
INTENSE THERMAL NEUTRON FIELDS FROM A MEDICAL-TYPE LINAC: THE E_LIBANS PROJECT
The e_LiBANS project aims at producing intense thermal neutron fields for diverse interdisciplinary irradiation purposes. It makes use of a reconditioned medical electron LINAC, recently installed at the Physics Department and INFN in Torino, coupled to a dedicated photo-converter, developed within this collaboration, that uses (\u3b3,n) reaction within high Z targets. Produced neutrons are then moderated to thermal energies and concentrated in an irradiation volume. To measure and to characterize in real time the intense field inside the cavity new thermal neutron detectors were designed with high radiation resistance, low noise and very high neutron-to-photon discrimination capability. This article offers an overview of the e_LiBANS project and describes the results of the benchmark experiment
Numerical analysis of the screening current-induced magnetic field in the HTS insert dipole magnet Feather-M2.1-2
Screening currents are field-induced dynamic phenomena which occur in superconducting materials, leading to persistent magnetization. Such currents are of importance in ReBCO tapes, where the large size of the superconducting filaments gives rise to strong magnetization phenomena. In consequence, superconducting accelerator magnets based on ReBCO tapes might experience a relevant degradation of the magnetic field quality in the magnet aperture, eventually leading to particle beam instabilities. Thus, persistent magnetization phenomena need to be accurately evaluated. In this paper, the 2D finite element model of the Feather-M2.1-2 magnet is presented. The model is used to analyze the influence of the screening current-induced magnetic field on the field quality in the magnet aperture. The model relies on a coupled field formulation for eddy current problems in time-domain. The formulation is introduced and verified against theoretical references. Then, the numerical model of the Feather-M2.1-2 magnet is detailed, highlighting the key assumptions and simplifications. The numerical results are discussed and validated with available magnetic measurements. A satisfactory agreement is found, showing the capability of the numerical tool in providing accurate analysis of the dynamic behavior of the Feather-M2.1-2 magnet
- …