28 research outputs found

    Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells. role of cMYC-IRF4-miR-125b interplay

    Get PDF
    Background: Anticancer immune responses may contribute to the control of tumors after conventional chemotherapy and different observations have indicated that chemotherapeutic agents can induce immune responses resulting in cancer cell death and immune-stimulatory side effects. Increasing experimental and clinical evidence highlight the importance of Natural Killer (NK) cells in immune responses toward Multiple Myeloma (MM) and combination therapies able to enhance the activity of NK cells against MM are showing promise in treating this hematologic cancer. The epigenetic readers of acetylated histones Bromodomain and Extra-Terminal (BET) proteins are critical regulators of gene expression. In cancer, they can upregulate transcription of key oncogenes such as cMYC, IRF4, BCL-2 and others. In addition, the activity of these proteins can regulate the expression of osteoclastogenic cytokines during cancer progression. Here, we investigated the effect of BET-bromodomain proteins inhibition, on the expression of Natural Killer (NK) cell-activating ligands in Multiple Myeloma (MM) cells. Methods: Five MM cell lines [SKO-007(J3), U266, RPMI-8226, ARP-1, JJN3] and CD138+ MM cells isolated from MM patients were used to investigate the activity of BET bromodomain inhibitors (BETi) (JQ1 and I-BET-151) and of the selective BRD4-degrader PROTAC (Proteolysis Targeting Chimera) (ARV-825), on the expression and function of several NK cell activating ligands (NKG2DLs and DNAM-1Ls), using Flow Cytometry, Real-Time PCR, transient transfections and degranulation assays. Results: Our results indicate that inhibition of BET proteins via small molecule inhibitors or their degradation via a hetero-bifunctional Proteolysis Targeting Chimera (PROTAC) probe can enhance the expression of MICA, a ligand of the NKG2D receptor, in human MM cell lines and primary malignant plasma cells, rendering myeloma cells more efficient to activate NK cell degranulation. Noteworthy, similar results were obtained using selective CBP/EP300 bromodomain inhibition. Mechanistically, we found that BETi-mediated inhibition of cMYC correlates with the upregulation of miR-125b-5p and the downregulation of the cMYC/miR-125b-5p target gene IRF4, a transcriptional repressor of MICA. Conclusions: These findings provide new insights on the immuno-mediated antitumor activities of BETi and further elucidate the molecular mechanisms that regulate NK cell-activating ligand expression in MM

    Technical Note: Determination of the metabolically active fraction of benthic foraminifera by means of Fluorescent In Situ Hybridization (FISH)

    Get PDF
    Benthic foraminifera are an important component of the marine biota, but protocols for investigating their viability and metabolism are still extremely limited. Classical studies on benthic foraminifera have been based on direct counting under light microscopy. Typically, these organisms are stained with Rose Bengal, which binds proteins and other macromolecules, but does not allow discrimination between viable and recently dead organisms. The fluorescent in situ hybridization technique (FISH) represents a new and useful approach to identify living cells possessing an active metabolism. Our work is the first test of the suitability of the FISH technique, based on fluorescent probes targeting the 18S rRNA, to detect live benthic foraminifera. The protocol was applied on <I>Ammonia</I> group and Miliolids, as well as on agglutinated polythalamous (i.e., <I>Leptohalysis scottii</I> and <I>Eggerella scabra</I>) and soft-shelled monothalamous (i.e., <I>Psammophaga</I> sp. and saccamminid morphotypes) taxa. The results from FISH analyses were compared with those obtained, on the same specimens assayed with FISH, from microscopic analysis of the cytoplasm colour, presence of pigments and pseudopodial activity. Our results indicate that FISH targets only metabolically active foraminifera, and allows discerning from low to high cellular activity, validating the hypothesis that the intensity of the fluorescent signal emitted by the probe is dependent upon the physiological status of cells. These findings support the usefulness of this molecular approach as a key tool for obtaining information on the physiology of living foraminifera, both in field and experimental settings

    Cyclic Vomiting Syndrome in Children

    Get PDF
    Cyclic Vomiting Syndrome (CVS) is an underdiagnosed episodic syndrome characterized by frequent hospitalizations, multiple comorbidities, and poor quality of life. It is often misdiagnosed due to the unappreciated pattern of recurrence and lack of confirmatory testing. CVS mainly occurs in pre-school or early school-age, but infants and elderly onset have been also described. The etiopathogenesis is largely unknown, but it is likely to be multifactorial. Recent evidence suggests that aberrant brain-gut pathways, mitochondrial enzymopathies, gastrointestinal motility disorders, calcium channel abnormalities, and hyperactivity of the hypothalamic-pituitary-adrenal axis in response to a triggering environmental stimulus are involved. CVS is characterized by acute, stereotyped and recurrent episodes of intense nausea and incoercible vomiting with predictable periodicity and return to baseline health between episodes. A distinction with other differential diagnoses is a challenge for clinicians. Although extensive and invasive investigations should be avoided, baseline testing toward identifying organic causes is recommended in all children with CVS. The management of CVS requires an individually tailored therapy Management of acute phase is mainly based on supportive and symptomatic care. Early intervention with abortive agents during the brief prodromal phase can be used to attempt to terminate the attack. During the interictal period, non-pharmacologic measures as lifestyle changes and the use of reassurance and anticipatory guidance seem to be effective as a preventive treatment. The indication for prophylactic pharmacotherapy depends on attack intensity and severity, the impairment of the QoL and if attack treatments are ineffective or cause side effects. When children remain refractory to acute or prophylactic treatment, or the episode differs from previous ones, the clinician should consider the possibility of an underlying disease and further mono- or combination therapy and psychotherapy can be guided by accompanying comorbidities and specific sub-phenotype. This review was developed by a joint task force of the Italian Society of Pediatric Gastroenterology Hepatology and Nutrition (SIGENP) and Italian Society of Pediatric Neurology (SINP) to identify relevant current issues and to propose future research directions on pediatric CV

    Gut Microbiota Features in Young Children With Autism Spectrum Disorders

    Get PDF
    Proliferation and/or depletion of clusters of specific bacteria regulate intestinal functions and may interfere with neuro-immune communication and behavior in patients with autism spectrum disorder (ASD). Consistently, qualitative and quantitative alteration of bacterial metabolites may functionally affect ASD pathophysiology. Up to date, age-restricted cohort studies, that may potentially help to identify specific microbial signatures in ASD, are lacking. We investigated the gut microbiota (GM) structure and fecal short chain fatty acids (SCFAs) levels in a cohort of young children (2–4 years of age) with ASD, with respect to age-matched neurotypical healthy controls. Strong increase of Bacteroidetes and Proteobacteria and decrease of Actinobacteria was observed in these patients. Among the 91 OTUs whose relative abundance was altered in ASD patients, we observed a striking depletion of Bifidobacterium longum, one of the dominant bacteria in infant GM and, conversely, an increase of Faecalibacterium prausnitzii, a late colonizer of healthy human gut and a major butyrate producer. High levels of F. prausnitzii were associated to increase of fecal butyrate levels within normal range, and over representation of KEGG functions related to butyrate production in ASD patients. Here we report unbalance of GM structure with a shift in colonization by gut beneficial bacterial species in ASD patients as off early childhood

    Is Quarantine for COVID-19 Pandemic Associated with Psychological Burden in Primary Ciliary Dyskinesia?

    No full text
    Background: Information on psychological impact of COVID-19 quarantine in primary ciliary dyskinesia (PCD), a chronic disorder with recurrent pulmonary exacerbations, is lacking. Psychological well-being was prospectively assessed during COVID-19 lockdown in Italy in a PCD population. Methods: we recruited 27 PCD patients and 27 healthy controls. To assess psychological well-being, psychological general well-being index and parenting stress index-short questionnaires were administered to participants ≥15 years-old and to mothers of participants <15 years-old, respectively. The PCD exacerbations since outbreak onset and frequency of quarantine weekly chest physiotherapy were compared to the same period of 2019. Outcomes: 70% of PCD mothers and 90% of PCD patients did not show parental stress levels or distress levels, respectively, and these groups showed no significant difference in stress compared to controls. The PCD pulmonary exacerbations occurred less frequently and weekly chest physiotherapy sessions significantly increased compared to the same period during 2019 (p < 0.05). Interpretation: During COVID-19 quarantine, a PCD population showed psychological well-being. Low exacerbation rate, explained by lower infectious exposure or improved compliance to chest physiotherapy, likely contributed to psychological well-being. Evaluating psychological burden and parental stress is a valuable tool for measuring the emotional impact of PCD and improving PCD medical care
    corecore