899 research outputs found

    Dynamic Structure Function in 3he-4he Mixtures

    Full text link
    Relevant features of the dynamic structure function S(q,ω)S(q,\omega) in 3^3He-4^4He mixtures at zero temperature are investigated starting from known properties of the ground state. Sum rules are used to fix rigorous constraints to the different contributions to S(q,ω)S(q,\omega), coming from 3^3He and 4^4He elementary excitations, as well as to explore the role of the cross term S(3,4)(q,ω)S^{(3,4)}(q,\omega). Both the low-qq (phonon-roton 4^4He excitations and 1p-1h 3^3He excitations) and high-qq (deep inelastic scattering) ranges are discussed.Comment: 29 pages, Plain TeX, 11 figures available by request from [email protected]

    Evaluating the performance of model transformation styles in Maude

    Get PDF
    Rule-based programming has been shown to be very successful in many application areas. Two prominent examples are the specification of model transformations in model driven development approaches and the definition of structured operational semantics of formal languages. General rewriting frameworks such as Maude are flexible enough to allow the programmer to adopt and mix various rule styles. The choice between styles can be biased by the programmer’s background. For instance, experts in visual formalisms might prefer graph-rewriting styles, while experts in semantics might prefer structurally inductive rules. This paper evaluates the performance of different rule styles on a significant benchmark taken from the literature on model transformation. Depending on the actual transformation being carried out, our results show that different rule styles can offer drastically different performances. We point out the situations from which each rule style benefits to offer a valuable set of hints for choosing one style over the other

    Ground state properties and excitation spectrum of a two dimensional gas of bosonic dipoles

    Full text link
    We present a quantum Monte Carlo study of two-dimensional dipolar Bose gases in the limit of zero temperature. The analysis is mainly focused on the anisotropy effects induced in the homogeneous gas when the polarization angle with respect to the plane is changed. We restrict our study to the regime where the dipolar interaction is strictly repulsive, although the strength of the pair repulsion depends on the vector interparticle distance. Our results show that the effect of the anisotropy in the energy per particle scales with the gas parameter at low densities as expected, and that this scaling is preserved for all polarization angles even at the largest densities considered here. We also evaluate the excitation spectrum of the dipolar Bose gas in the context of the Feynman approximation and compare the results obtained with the Bogoliubov ones. As expected, we find that these two approximations agree at very low densities, while they start to deviate from each other as the density increases. For the largest densities studied, we observe a significant influence of the anisotropy of the dipole-dipole interaction in the excitation spectrum.Comment: 6 pages, 6 figure

    Quadratic diffusion Monte Carlo and pure estimators for atoms

    Full text link
    The implementation and reliability of a quadratic diffusion Monte Carlo method for the study of ground-state properties of atoms are discussed. We show in the simple yet non-trivial calculation of the binding energy of the Li atom that the method presented is effectively second-order in the time step. The fulfilment of the expected quadratic behavior relies on some basic requirements of the trial wave function used for importance sampling, in the context of the fixed-node approximation. Expectation values of radial operators are calculated by means of a pure estimation based on the forward walking methodology. It is shown that accurate results without extrapolation errors can be obtained with a pure algorithm that can be easily implemented in any previous diffusion Monte Carlo program.Comment: RevTex, 20 pages, 3 figures, accepted in J. Chem. Phy

    Coherent and Incoherent Dynamic Structure Function of the Free Fermi Gas

    Full text link
    A detailed calculation of the coherent and incoherent dynamic structure functions of the free Fermi gas, starting from their expressions in terms of the one- and semi-diagonal two-body density matrices, is derived and discussed. Their behavior and evolution with the momentum transfer is analyzed, and particular attention is devoted to the contributions that both functions present at negative energies. Finally, an analysis of the energy weighted sum rules satisfied by both responses is also performed. Despite of the simplicity of the model, some of the conclusions can be extended to realistic systems.Comment: LaTeX, 3 figure

    Superfluidity versus localization in bulk 4He at zero temperature

    Full text link
    We present a zero-temperature quantum Monte Carlo calculation of liquid 4^4He immersed in an array of confining potentials. These external potentials are centered in the lattice sites of a fcc solid geometry and, by modifying their well depth and range, the system evolves from a liquid phase towards a progressively localized system which mimics a solid phase. The superfluid density decreases with increasing order, reaching a value ρs/ρ=0.079(16) \rho_{\rm s}/\rho = 0.079(16) when the Lindemann's ratio of the model equals the experimental value for solid 4^4He.Comment: 5 pages,5 figure

    Single-particle vs. pair superfluidity in a bilayer system of dipolar bosons

    Get PDF
    We consider the ground state of a bilayer system of dipolar bosons, where dipoles are oriented by an external field in the direction perpendicular to the parallel planes. Quantum Monte Carlo methods are used to calculate the ground-state energy, the one-body and two-body density matrix, and the superfluid response as a function of the separation between layers. We find that by decreasing the interlayer distance for fixed value of the strength of the dipolar interaction, the system undergoes a quantum phase transition from a single-particle to a pair superfluid. The single-particle superfluid is characterized by a finite value of both the atomic condensate and the super-counterfluid density. The pair superfluid phase is found to be stable against formation of many-body cluster states and features a gap in the spectrum of elementary excitations.Comment: 4 figure

    Composite boson description of a low density gas of excitons

    Get PDF
    Ground state properties of a fermionic Coulomb gas are calculated using the fixed-node diffusion Monte Carlo method. The validity of the composite boson description is tested for different densities. We extract the exciton-exciton ss-wave scattering length by solving the four-body problem in a harmonic trap and mapping the energy to that of two trapped bosons. The equation of state is consistent with the Bogoliubov theory for composite bosons interacting with the obtained ss-wave scattering length. The perturbative expansion at low density has contributions physically coming from (a) exciton binding energy, (b) mean-field Gross-Pitaevskii interaction between excitons, (c) quantum depletion of the excitonic condensate (Lee-Huang-Yang terms for composite bosons). In addition, for low densities we find a good agreement with the Bogoliubov bosonic theory for the condensate fraction of excitons. The equation of state in the opposite limit of large density is found to be well described by the perturbative theory including (a) mixture of two ideal Fermi gases (b) exchange energy. We find that for low densities both energetic and coherent properties are correctly described by the picture of composite bosons (excitons).Comment: 12 pages, 4 figure
    corecore