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Ground state properties of a fermionic Coulomb gas are calculated using
the fixed-node diffusion Monte Carlo method. The validity of the compos-
ite boson description is tested for different densities. We find that for low
densities both energetic and coherent properties are correctly described by
the picture of composite bosons (excitons). We extract the exciton-exciton s-
wave scattering length by solving the four-body problem in a harmonic trap
and mapping the energy to that of two trapped composite bosons. The equa-
tion of state is consistent with the Bogoliubov theory for composite bosons
interacting with the obtained s-wave scattering length. The perturbative ex-
pansion at low density has contributions physically coming from (a) exciton
binding energy, (b) mean-field Gross-Pitaevskii interaction between excitons,
(¢) quantum depletion of the excitonic condensate (Lee-Huang-Yang terms for
composite bosons). In addition, for low densities we find a good agreement
with the Bogoliubov bosonic theory for the condensate fraction of excitons.
The equation of state in the opposite limit of large density is found to be well
described by the perturbative theory including (a) mixture of two ideal Fermi
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gases (b) exchange energy. We conclude that the description of excitons as
composite bosons is valid in the region of low density.

1 Introduction

The achievement of Bose-Einstein condensation (BEC) in confined alkali gases
at nanokelvin temperatures has reinforced the interest in the search for other
systems showing this extreme quantum behavior. In this line, the progress
achieved in recent years towards the observation of a BEC state in Coulomb
systems is of particular interest. This new candidate for a Bose condensate and
superfluid state will show its macroscopic quantum behavior at much larger
temperatures than BEC states in ultracold gases due to the much lower mass of
the electron with respect to alkali atoms. This feature, and its expected larger
lifetime, makes the study of BEC in Coulomb systems extremely interesting.

Thinking on a BEC state, where the constituents are electrons and holes,
leads immediately to the idea of formation of composite bosons where one
electron and one hole, both of Fermi statistics, bind together. This composite
particle is termed ezciton and is on the basis of the search for a BEC state
in electronic matter. Direct excitons are the ones in which electron and hole
are not physically separated by any external potential, whereas indirect ones
are carried out by physically separating electron and holes in two different
layers with zero transition probability between them. Indirect excitons are the
most studied ones and constitute the most probable scenario for observing
their Bose-Einstein condensation with the advantage of a larger lifetime with
respect to the direct ones. In fact, recently [20] it was claimed that super-
fluidity of dipolar excitons in GaAs was experimentally observed for the first
time. A comprehensive review of the state-of-the-art of indirect excitons in
semiconductor quantum wells can be found in Ref. [I4].

[23] [82] (&3] (6] (23] [B5] (0] (3] (@] [&] (4] (o] o5 [29] [B0) (7] [65)
(&3] (8] (23]

The case of direct excitons has been less studied, probably in part due to
the experimental difficulty of making the system stable for a finite lifetime.
However, a gas of excitons is a clean and very interesting system from the the-
oretical side. It is particularly interesting to study its properties in the limit of
low densities in which a description of the system in terms of composite bosons
seems more appropriate. Considering a gas of polarized electrons (treated as
spin up particles) and polarized holes (spin down particles), the ground state
at low density will be constituted by a gas of excitons where one electron and
one hole couple and form a boson with integer spin. Then, these composite
bosons will behave as bosons with a mass equal to the sum of the masses
of electron and hole and the s-wave scattering length between excitons will
be the dominant parameter of their effective interaction. In some sense, this
is formally equivalent to the formation of molecules in dilute two-component
Fermi gases with positive scattering lengths, i.e., beyond the unitary limit.
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While the excitonic description is very simple and tempting, due to the
possibility of using well-established techniques (Gross-Pitaevskii equation[T9,
a0], Bogoliubov theory[27], etc), in the last years there was a strong criticism
of the very idea of such possibility. One of the strongest opponents to such
description comes notably due to Monique Combescot who by introducing
Shiva diagrams and performing calculations[lIH] argued that for the composite
bosons description of an exciton intrinsically misses a relevant part. That is,
for some properties an elementary boson differs in a fundamental way from
two Coulomb fermions due to the composite nature which prohibits[i2] to
describe the interaction between excitons by some effective potential even in
the extremely low density limit, and eventually to make use of the usual many-
body theories. We note that the bosonic or fermionic nature of excitons should
manifest itself in the energetic and coherent properties of the gas. If the model
of composite bosons is physically correct, the equation of state can be expanded
in powers of the gas parameter na3, where n is the density and a is the s-wave
scattering length. As a function of density the mean-field contribution to the
energy per particle should scale as « n and beyond-mean field one as o n3/2. If
instead the fermionic nature is essential, the equation of state should contain
terms proportional to the Fermi momentum kp = (37%n)/% o n'/? or the
Fermi energy o n?/3. Thus by calculating the expansion of the equation of
state in an ab initio microscopic simulation of a Coulomb fermionic system
we should be able to see which description holds. Furthermore, we can check
if the exciton-exciton interaction can be described in terms of some effective
potential, namely a short-range potential with an effective s-wave scattering
length aee. To do so we can first solve the four-body problem and extract aee
and afterwards compare the energy in the many-body system.

It can be argued, that Quantum Monte Carlo methods are extremely
well suited for studying the equilibrium properties of electron and Coulomb
systems. Fixed-node diffusion Monte Carlo calculations of jellium surfaces
were performed by Acioli and Ceperley[l]. A relativistic electron gas was
studied by VMC and DMC methods by Kenny et al.[2d] The electron-hole
plasma was recently studied by variational Monte Carlo[df] and diffusion
Monte Carlo[I6,43] approaches. Two-dimensional electron gas in strong mag-
netic fields was investigated in Ref. [B8] by means of variational Monte Carlo
method. Finite-temperature properties can be accessed using path integral
Monte Carlo method. The high-temperature phase diagram of a hydrogen
plasma was obtained in Ref. [B4]. The biexciton wave function was obtained
using a quantum Monte Carlo calculation in Ref. [H].

In the present paper, we analyze a gas of excitons at low densities trying
to verify if their description as composite bosons is compatible with the low
density expansion for the energy and condensate fraction of a dilute universal
Bose gas. To this end, we have performed quantum Monte Carlo simulations
of the Fermi electron-hole gas using accurate trial wave functions and the
fixed-node approximation to control the sign. To make the comparison feasible
we have also calculated the scattering length between excitons which shows
agreement with previous estimations. At low densities, the effective description
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of energy and condensate fraction of pairs is fully compatible with the universal
law for dilute bosons without any significant contribution of purely Fermi
contributions.

The rest of the paper is organized as follows. In Section B, we briefly de-
scribe the quantum Monte Carlo method used in the present study. Section B
comprises the analysis of the four-body problem in harmonic confinement used
to determine the exciton-exciton s-wave scattering length. Results of the many-
body problem and their effective description as composite bosons are reported
in Sec. . Finally, we draw the conclusions of the work in Sec. B.

2 Quantum Monte Carlo method

In the present work the electron-hole system is microscopically described using
the diffusion Monte Carlo (DMC) method. DMC is nowadays a standard tool
for describing quantum many-body systems that solves, in a stochastic way,
the imaginary-time Schrédinger equation of the system (for a general reference
on the DMC method, see for example [R]). For particles obeying Bose-Einstein
statistics, DMC solves exactly the problem for the ground state within some
statistical variance. When the system under study is of Fermi type we need to
introduce an approximation to account for the non-positiveness of the wave
function. This approximation, known as fized node (FN), restricts the random
walks within the nodal pockets defined by a trial wave function used as impor-
tance sampling technique during the imaginary-time evolution. Further details
on the FN-DMC method can be found elsewhere.

Our system is composed by a mixture of N, electrons with mass m. and N},
holes with mass my,. All the electrons (holes) have the same spin up (down).
The Hamiltonian of the system is

72 Ne B2 Np Ne o2 Np o2 Ne,Np, o2
2me 4 2my, ol 7 B B 70 Ve B £,
=1 =1 1<J i <g’ 3,1/ =1
where i,7,...and i, j',... label electron and hole coordinates, respectively. In

our study, we have considered equal masses m, = m; = m and used distances
measured in units of the Bohr radius ag = h?/(me?) and energies in Hartrees,
1Ha = €?/ag. Therefore, in these units the Hamiltonian becomes

1 N, 1 Np, N 1 Ny, 1 Ne,Ny, 1
H=-3Vi-o>Vi+d —+> — = > —. (2
24 2 - — Tij S, Tirg! 7 Tig

i=1 =1 1<J i <j’ 1,2'=1

The convergence of DMC method is significantly improved by a proper
choice of the trial wave function used for the importance sampling. As we
are interested in the excitonic phase at low densities, our model for the wave
function in the superfluid phase is

¥(R) = A(d(r11)(razr) - - ¢(rn.ny,)) 3)
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with A the antisymmetrizer operator of all the pair orbitals ¢(r;;). This
function is taken from the ground-state solution of the two-body problem,
¢(riir) = exp|—riir /(2a9)], corresponding to the electron-hole bound state with
energy Ej, = —h?%/(4ma?). It is worth noticing that a similar approach[2,8] was
used in the study of the unitary limit of a two-component Fermi gas and proved
its accuracy in reproducing the experimental data.

In order to take into account the long-range behavior of the Coulomb in-
teraction, we used standard Ewald summation to reduce size effects. Other
possible bias coming from the use of a finite time step and number of walkers
were optimized to reduce their effect to the level of the typical statistical noise.

3 Four body problem. Exciton-exciton scattering length

If the description of excitons in terms of composite bosons is possible, the size
of each composite bosons is of the order of the Bohr radius ag. In the limit of
dilute density, nad — 0, the exciton-exciton interaction potential can be de-
scribed by a single parameter, the s-wave scatterging length a... In this section
we extract its value from the four-body problem. A textbook procedure[25] of
finding the s-wave scattering length involves finding the low-energy asymptotic
of the phase shift in the scattering problem. Alternatively, one might solve the
few-body problem in a harmonic oscillator trapping and map the energy to
that of a two-boson problem and take the limit of the vanishing strength of
the trap[22, (1]

We calculate the energy of the le+1h and 2e+2h systems confined in a
harmonic trap of different frequencies. The Hamiltonian in this case is the
sum of the original Hamiltonian H, Eq. (2), and the confining term, that is

5T s (4)

Ne 1 Nh
He=H+> S
i=1 V=

=1

where we consider equal masses m, = mj = m and use harmonic oscillator
(HO) dimensionless units, HO length ag = /h/(mw) for distances and HO
level spacing Eg = hw for the energies. To improve the sampling, the trial

wave function (B) is multiplied by one-body terms which are the solution of
non-interacting particles under the harmonic confinement,

Ne 5 N}'L 5
U (R)=[[e " [[e " ¥(R). (5)
i=1 =1

The two-body problem, le-1h, can be solved exactly using a numerical grid
method and also using the DMC method. We have verified that both results
match exactly. For the four-body case, 2e-2h, we deal only with the DMC
method. The energies for the two and four-body problems can be split in the
following form

Es = Ey+ Ecm (6)
LBy = 2By + By + Ecum (7)
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Fig. 1 Exciton-exciton s-wave scattering length as a function of ag/ape-

with Ej the binding energy of le-1h, Ecy = 3/2 the center-of-mass energy, and
Ejt the energy associated to the exciton-exciton interaction. We are mainly
interested in the last one,

3
Ein = (By — 2E5) + R (8)

because from it we can extract the s-wave scattering length.

The 2e-2h system in a harmonic trap can be thought as forming two dimers
(excitons) with Bose statistics. These composite bosons interact with some
short-range potential, which can be approximated as a regularized contact
pseudopotential,

V(r)= 4waee§(r)%(r-) . (9)

With this approximation, one can consider the problem of two bosons in a
trap with effective Hamiltonian

1 1 0
Hg = —§V%72 + 57"%72 + 47’(’@85(5(1'12)%(7‘12') s (10)

with my, being the mass of composite particle (m, = m, + my = 2m in the
case of equal masses). This problem can be solved analytically, see Ref [d]),
and the s-wave scattering length a.. can be analytically derived,

a _ i F(_Eint/2 + 1/4) (11)
“ V2 I(—Ewm/2+3/4)"

with Ej,¢ the energy associated to the exciton-exciton interaction ().
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Fig. 2 FN-DMC energies per particle as a function of the gas parameter nag. In the limit
of zero density we recover the binding energy of the electron-hole pair. The dashed and
dot-dashed lines stand for the MF and MF+4+LHY energies, respectively, considering the
exciton-exciton scattering length ace = 3ag. The lines are shifted to give the binding energy
of the pair at zero density.

Results for the scattering length a.. obtained through the combination
of DMC results for the energy FEi,; and the formula for a.. () are re-
ported in Fig. 0 for different values of ag/ap,. As one can see, the dependence
of a.. on the strength of the confinement is rather shallow, approaching a
value ae. >~ 3ag when ag/ap, — 0. This result is in nice agreement with a
previous estimation by Shumway and Ceperley based on finite-temperature
calculations[d?] performed using path integral Monte Carlo method.

4 Electron-hole gas

Using the formalism introduced in Sec. B we have calculated the properties
of a bulk electron-hole gas, mainly for very low values of the gas parameter
nad, with n = (N, + N},)/V the total density. We consider an unpolarized gas,
N, = Np, of equal mass particles. As we are interested in the description of
the excitonic phase we use as a trial wave function a determinant composed
by electron-hole orbitals (see Sec. B).

In Fig. B, we plot the energy of the electron-hole gas per particle E/N as
a function of the gas parameter na3. At very low densities, naj < 107%, the
energy per particle tends to half the binding energy of an electron-hole pair,
—lep|/2 = —0.125 Ha. When the density increases the energy also increases
due to the interaction between excitons. OQur DMC results are compared with
the mean-field energy[27,89] (in Ha) of a weakly interacting composite Bose
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Fig. 3 FN-DMC energies per particle as a function of the gas parameter nag. The dashed
line stands for the energy of a mixture of two ideal Fermi gases. The dotted-dashed lines
incorporates the exchange energy to the ideal Fermi gas model.

gas,
FE T

— = —— Nexa? 12
(N>MF 2agene Qee ( )

considering aee = 3 (in ag units) and nex = N/(2V). In Fig. B, we plot the
mean-field energy (I2) shifted to be half the binding energy of the pair —|ep|/2.
Our results match the mean-field energy with ae. = 3ag at very low densities,
naj < 107 but, when the gas parameter increases more, the DMC energies
increase faster than the mean-field law. Adding the Lee-Huang-Yang (LHY)
correction[Z1, 26] to the mean-field term (I2),

E - ; 128
£ = " ped® |14+ = neead 13
(N)LHY 2az, "exee |1 gz V Mextlee (13)

we can estimate the beyond-mean-field first correction. In Fig. B, we plot LHY
energy (3) to be compared with the DMC data. As one can see, the LHY
law reproduces our data up to densities naj ~ 31072 which approach the
end of the universal regime, where the energy of a Bose gas is completely
described solely in terms of the gas parameter. The LHY term arises from
quantum fluctuations of the bosons that drop out of the condensate and in
a single component LHY correction is accurate up to na® < 1073[I8], where
a is the boson-boson s-wave scattering length. It is interesting to note that
the energetic behavior of the Coulomb electron-hole gas at low-density is fully
described by the picture of composite bosons. These results corroborate the
picture of an exciton as being considered effectively as a composite boson.
When the density increases even more the energies depart from the low-
density universal expansion (IC3). At high density one expects that the system
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Fig. 4 Condensate fraction of excitons as a function of the gas parameter nag. The line
corresponds to the Bogoliubov prediction for a dilute gas of composite bosons interacting
with s-wave scattering length aee.

evolves to a mixture of two ideal Fermi gases with energy[7]

EO® 221
Ney 127

(14)

with r.a9 = (3/(47n))"/2. In Fig. B, we plot the energy (Id) as a function
of the gas parameter na3. As one can see this energy is clearly out of our
results. However, if one incorporates the exchange energy derived as a first-
order perturbation theory on top of the free Fermi gas[i7],

EM 221 0916

2
Nex rs T

(15)

our results approach well to Eq. (I3).

If the description of excitons as composite bosons, interacting with an
effective s-wave scattering length aee, is correct at low densities then we have
to observe a finite fraction of condensate pairs. We found that the excitonic
picture of composite bosons provides a good energetic description and it is
important to verify up to which level the excitonic description is valid in terms
of the coherence in the correlation functions. To this end, we have calculated
the two-body density matrix

pa(rh, 1h, 11, 1) = (L (rh)0] (xh) e (x1)1)y (r2)) - (16)

For an unpolarized gas with N, = Ny = N/2 and N, = N| = N/2, if p, has
an eigenvalue of the order of the total number of particles N, the ps can be
decomposed as,

pQ(r/h r/25 ry, r2) = O{N/Q(p* (rllr IJZ)()O(I'I’ r2) + PIQ s (17)
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ph containing only eigenvalues of order one. The parameter o < 1 in Eq. (IC2)
is interpreted as the condensate fraction of pairs (excitons), in a similar way as
the condensate fraction of single atoms is derived from the one-body density
matrix.

The spectral decomposition ([A) yields for homogeneous systems the fol-
lowing asymptotic behavior of py

pa(ry, 15,11, 12) = aN/2¢"(Jr) — r3))¢(|rs — r2) (18)

if vy —r}], |ro — 5| — oo. The wave function ¢ is proportional to the order pa-
rameter (4(r1)y (r2)) = /aN/2¢p(|Jr; —ra|), whose appearance characterizes
the superfluid state of composite bosons.

In Fig. B, we plot the condensate fraction of excitons as a function of
the gas parameter. At very low densities practically all the pairs are in the
condensate, No/N — 1 and this value decreases monotonically towards zero
with the density. The DMC estimation of the condensate fraction becomes
difficult at large densities, which translates into a larger statistical noise, as
can be appreciated in the figure. When the gas parameter is low enough one
expects to recover the Bogoliubov law,

N

WO =1- %«/ncxag’c : (19)
We compare this low density universal behavior (I9) with the DMC data
in Fig. @. As we can see, the agreement is excellent corroborating that the
composite-boson picture with aee is fully consistent. It is interesting to note
that the the universal behavior in a single component Bose gas breaks down
at a similar value of the gas parameter, na® ~ 10~2[L].

5 Conclusions

The consideration of excitons as composite bosons has been controversial for
many years. Our DMC calculations have tried to contribute to this discus-
sion using a microscopic approach, with the only restriction of the fixed-node
approximation to overcome the sign problem. Working first with a four-body
problem we have obtained the s-wave scattering length of the exciton-exciton
interaction. The value obtained is in good agreement with previous estima-
tions obtained in finite-temperature path integral Monte Carlo calculations.
In the second part of the present study, we have calculated the properties of a
homogeneous electron-hole system, focusing on the energy and the excitonic
condensate fraction. Both the energy and condensate fraction agrees perfectly
at low densities with the universal relations in terms of the gas parameter. Us-
ing the scattering length, obtained from the four-body problem, we reproduce
the DMC data at low densities with good accuracy. In particular, we observe
the relevance of the Lee-Huang-Yang term, beyond the mean field one, in de-
scribing correctly the energy. Only after the universal regime breaks down, the
energies depart from the composite-boson picture and approach the regime of a
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Fermi gas with Coulomb interaction. The equation of state in the high-density
regime agrees with the description in terms of the energy of two ideal Fermi
gases corrected by the exchange energy arising due to Coulomb interactions.
With respect to the condensate fraction of excitons, we have verified by means
of a calculation of the two-body density matrix that the condensate fraction of
pairs matches the Bogoliubov prediction of a Bose gas of particles interacting
with an scattering length ae. for low values of the gas parameter.

Altogether, our results allow to conclude that the disputed interpretation
of excitons as composite bosons is actually consistent with our results, at least
in the regime of small gas parameters of the gas.
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