125 research outputs found

    Genome-wide association studies in plants: the missing heritability is in the field

    Get PDF
    Genome-wide association studies (GWAS) have been even more successful in plants than in humans. Mapping approaches can be extended to dissect adaptive genetic variation from structured background variation in an ecological context

    Natural Genetic Variation for Growth and Development Revealed by High-Throughput Phenotyping in Arabidopsis thaliana

    Get PDF
    Leaf growth and development determines a plant’s capacity for photosynthesis and carbon fixation. These morphological traits are the integration of genetic and environmental factors through time. Yet fine dissection of the developmental genetic basis of leaf expansion throughout a growing season is difficult, due to the complexity of the trait and the need for real time measurement. In this study, we developed a time-lapse image analysis approach, which traces leaf expansion under seasonal light variation. Three growth traits, rosette leaf area, circular area, and their ratio as compactness, were measured and normalized on a linear timescale to control for developmental heterogeneity. We found high heritability for all growth traits that changed over time. Our study highlights a cost-effective, high-throughput phenotyping approach that facilitates the dissection of genetic basis of plant shoot growth and development under dynamic environmental conditions

    A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    Get PDF
    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis

    Population genomic variation reveals roles of history, adaptation and ploidy in switchgrass

    Get PDF
    Citation: Grabowski, Paul P., Geoffrey P. Morris, Michael D. Casler, and Justin O. Borevitz. “Population Genomic Variation Reveals Roles of History, Adaptation and Ploidy in Switchgrass.” Molecular Ecology 23, no. 16 (2014): 4059–73. https://doi.org/10.1111/mec.12845.Geographic patterns of genetic variation are shaped by multiple evolutionary processes, including genetic drift, migration and natural selection. Switchgrass (Panicum virgatum L.) has strong genetic and adaptive differentiation despite life history characteristics that promote high levels of gene flow and can homogenize intraspecific differences, such as wind-pollination and self-incompatibility. To better understand how historical and contemporary factors shape variation in switchgrass, we use genotyping-by-sequencing to characterize switchgrass from across its range at 98 042 SNPs. Population structuring reflects biogeographic and ploidy differences within and between switchgrass ecotypes and indicates that biogeographic history, ploidy incompatibilities and differential adaptation each have important roles in shaping ecotypic differentiation in switchgrass. At one extreme, we determine that two Panicum taxa are not separate species but are actually conspecific, ecologically divergent types of switchgrass adapted to the extreme conditions of coastal sand dune habitats. Conversely, we identify natural hybrids among lowland and upland ecotypes and visualize their genome-wide patterns of admixture. Furthermore, we determine that genetic differentiation between primarily tetraploid and octoploid lineages is not caused solely by ploidy differences. Rather, genetic diversity in primarily octoploid lineages is consistent with a history of admixture. This suggests that polyploidy in switchgrass is promoted by admixture of diverged lineages, which may be important for maintaining genetic differentiation between switchgrass ecotypes where they are sympatric. These results provide new insights into the mechanisms shaping variation in widespread species and provide a foundation for dissecting the genetic basis of adaptation in switchgrass

    Allele Interaction – Single Locus Genetics Meets Regulatory Biology

    Get PDF
    Background: Since the dawn of genetics, additive and dominant gene action in diploids have been defined by comparison of heterozygote and homozygote phenotypes. However, these definitions provide little insight into the underlying intralocus allelic functional dependency and thus cannot serve directly as a mediator between genetics theory and regulatory biology, a link that is sorely needed. Methodology/Principal Findings: We provide such a link by distinguishing between positive, negative and zero allele interaction at the genotype level. First, these distinctions disclose that a biallelic locus can display 18 qualitatively different allele interaction sign motifs (triplets of +, – and 0). Second, we show that for a single locus, Mendelian dominance is not related to heterozygote allele interaction alone, but is actually a function of the degrees of allele interaction in all the three genotypes. Third, we demonstrate how the allele interaction in each genotype is directly quantifiable in gene regulatory models, and that there is a unique, one-to-one correspondence between the sign of autoregulatory feedback loops and the sign of the allele interactions. Conclusion/Significance: The concept of allele interaction refines single locus genetics substantially, and it provides a direct link between classical models of gene action and gene regulatory biology. Together with available empirical data, our results indicate that allele interaction can be exploited experimentally to identify and explain intricate intra- and inter-locu

    Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis

    Get PDF
    Background: The genus Aquilegia is an emerging model system in plant evolutionary biology predominantly because of its wide variation in floral traits and associated floral ecology. The anatomy of the Aquilegia flower is also very distinct. There are two whorls of petaloid organs, the outer whorl of sepals and the second whorl of petals that form nectar spurs, as well as a recently evolved fifth whorl of staminodia inserted between stamens and carpels. Methodology/Principal Findings: We designed an oligonucleotide microarray based on EST sequences from a mixed tissue, normalized cDNA library of an A. formosa x A. pubescens F2 population representing 17,246 unigenes. We then used this array to analyze floral gene expression in late pre-anthesis stage floral organs from a natural A. formosa population. In particular, we tested for gene expression patterns specific to each floral whorl and to combinations of whorls that correspond to traditional and modified ABC model groupings. Similar analyses were performed on gene expression data of Arabidopsis thaliana whorls previously obtained using the Ath1 gene chips (data available through The Arabidopsis Information Resource). Conclusions/Significance: Our comparative gene expression analyses suggest that 1) petaloid sepals and petals of A. formosa share gene expression patterns more than either have organ-specific patterns, 2) petals of A. formosa and A. thaliana may be independently derived, 3) staminodia express B and C genes similar to stamens but the staminodium genetic program has also converged on aspects of the carpel program and 4) staminodia have unique up-regulation of regulatory genes and genes that have been implicated with defense against microbial infection and herbivory. Our study also highlights the value of comparative gene expression profiling and the Aquilegia microarray in particular for the study of floral evolution and ecology.Organismic and Evolutionary Biolog
    corecore