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Despite their unprecedented density, current SNP genotyping arrays contain large amounts of redundancy, with up to 40
oligonucleotide features used to query each SNP. By using publicly available reference genotype data from the International
HapMap, we show that 93.6% sensitivity at ,5% false positive rate can be obtained with only four probes per SNP, compared
with 98.3% with the full data set. Removal of this redundancy will allow for more comprehensive whole-genome association
studies with increased SNP density and larger sample sizes.
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INTRODUCTION
High density genotyping arrays have been heralded as one of the

technologies that will enable whole-genome association tests to

make good on the promise that sequencing the human genome

will reveal the genetic causes of complex diseases [1–4]. While

currently-available arrays, or chips, have the capacity for assaying

hundreds of thousands of Single Nucleotide Polymorphisms

(SNPs) in a single experiment, data from millions of SNPs across

a large number of samples is needed to fine map complex traits.

Fortunately, with current technology, this is already possible

because available arrays have a large amount of redundancy—

multiple oligonucleotide features (probes) are used to assay the

same SNP. If that redundancy were reduced or even eliminated,

commensurately more data could be obtained for the same price.

We therefore sought to determine the minimum number of

features necessary to accurately assign genotypes to Affymetrix’s

GeneChip.

MATERIALS AND METHODS
The physical Affymetrix GeneChip Human Mapping 100K chip

contains 116,204 biallelic SNPs interrogated in two subsets that

differ in which restriction enzyme was used in their preparation,

either XbaI or HindIII [5]. We analyzed only the Xba subset but

assume the results will be applicable to the Hind data. The

Affymetrix GeneChip Human Mapping 100K data set (http://

www.affymetrix.com/support/technical/sample_data/hapmap_

trio_data.affx) contains raw, feature-level data for 90 CEPH

individuals genotyped across these 116,204 SNPs. Our analyses

are based on the Xba subset, which contains 58,960 SNPs. Most of

these (58,011, 98%) were also included in the HapMap Project [6].

HapMap SNP genotypes were used as our gold standard because

of the project’s quality control measures (trios for genotyping,

multi-site verification), though we and others [7] acknowledge

errors may still be present in this data. The Affymetrix data set

lacked genotype calls for 4,651 SNPs and were omitted in all

subsequent analyses, leaving 53,360 SNPs in our working set.

We used the Bioconductor [8] package Robust Linear Model

with Mahalanobis Distance Classifier (RLMM) [7] for making

genotype classifications or calls. By using a multi-chip, multi-SNP

approach, predicated on a large training set, RLMM has been

shown to be an accurate and informationally efficient method [7].

A variation, Bayesian RLMM, is now provided by Affymetrix

for analyzing their 500K arrays as a white paper (BRLMM,

http://www.affymetrix.com/support/technical/product_updates/

brlmm_algorithm.affx), and an improved method, CRLMM,

was just released as an R/oligo developmental package [9].

The Affymetrix arrays contain probe sets for each SNP with up

to 20 perfect match and 20 mismatch features (Fig. 1). RLMM,

BRLMM, CRLMM do not use mismatch data, making K of the

array immediately redundant. We modified RLMM to allow

genotype assignments to be made using specific subsets of features.

This includes all 5 feature positions (the default for RLMM with

the 100K chip), the 3 central-most (default for the 500K chip), and

a single central feature position. By default RLMM uses the

information from both the sense and antisense strands. We further

modified it to allow for selection of only a single strand using two

different methods. One method selects the strand with the

strongest average signal across features of both A and B alleles,

while the other method uses the strand with the maximal allele

intensity difference. These 6 parameter combinations (1, 3, or 5

features per strand; 1 or 2 strands) were used in turn to make

genotype classifications, with a 100% calling rate setting in

RLMM. It is also possible to use a single probe for genotyping

using intensity alone to make the call. This approach called Single

Feature Polymorphism [10] was not investigated here as both

alleles are known and included on the array. Additional workflow

information, including our full data sets and algorithms, are available

online (http://www.naturalvariation.org/snpredundancy).

RESULTS
We first tested for internal concordance in genotype classification,

comparing genotype calls made with reduced probesets to the full

probeset of 20 features (5 positions, 2 strands, 2 alleles). For each

SNP, the number of discordant genotypes was counted. That is,

for each of the 90 individuals in the data set, their reduced

probeset-derived genotype was compared to the full probeset-

derived genotype. Supplemental Figure 1 and Supplementary

Table S1 show the cumulative distribution of SNPs at different
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discordance thresholds. Notably, even with only 2 features (1

central position & 1 strand, or 10% of the total data), half of the

SNPs are called in perfect concordance and 78% have 2 or fewer

discordant calls. When both strands are used, 66% of SNPs have

perfect concordance and 85% have 2 or fewer discordances.

We next tested specificity and sensitivity with independent

genotype classification by comparing RLMM genotype calls made

with various feature subsets to HapMap genotypes. Again, for

each SNP, specificity was measured as the number of discrepancies

across samples (Figure 2, x axis). Sensitivity is shown as the

proportion of SNPs with given specificity. The full model is less

than perfect and achieves 98.3% sensitivity at 95% specificity (4/

90 or fewer discrepancies). So, how much worse are less redundant

designs? The reduced models with 1 or 3 features on 2 strands

perform quite well achieving 93.6% and 96.8%, respectively.

Figure 2 shows the cumulative distribution of discrepancies across

all SNPs. The single strand with maximum intensity was also quite

predictive and would be important for RNA assays. 3 positions on

1 strand (6 features) was better than 1 position on 2 strands (4

features), and 5 positions on 1 strand (10 features) was worse than

3 positions on 2 strands (12 features), as would be expected given

extra redundancy (Supplemental table S2). The point is that the

improvement with extra data is minimal.

We next considered the manner in which discrepancies occurred

by comparing how genotypes should have been called (HapMap

AA, AB, BB calls) to how they were actually called (RLMM AA,

AB, BB calls) for each of the reduced probesets. As has been

previously reported [7], heterozygotes were most prone to mis-

classification. For example SNPs typed at 1 position across two

strands, hets are miscalled 2.8% and homozygotes each at 0.4%.

This bias however, was not greatly exaggerated for the reduced

probesets (Supplementary Table S3).

Finally, we tested if the genotyping errors were non-randomly

distributed, perhaps due to bad samples or to bad SNPs. No DNA

sample gave an abnormally large number of discrepant genotypes

as would be the case with a poor sample or array; however some

SNPs performed poorly, independent of the redundancy in the

probeset. For example, we compared genotyping discrepancies for

genotypes generated using a reduced probeset (1 position, 2

strands, 2 alleles) to the full probeset (5 positions, 2 strands, 2

alleles) in Figure 3. 33,712 SNPs (63%) lie on or above the

diagonal and are not improved by the full feature set. The majority

of these, 30,585 SNPs, are called perfectly in either case. 2,516

SNPs benefit from larger probesets and do pass (,%5 false

positives) with the full probeset. However, more data does not

always help: 17 SNPs that fail (.5% false positives) with the full set

actually pass with the reduced set.

In general, poorly performing SNPs reduce the overall

performance of the array and should be eliminated in future

array designs. For example, by removing SNPs that had more than

1 discrepancy when using the full feature set (6.04% of all SNPs),

the overall proportion of SNPs with 4 or fewer discrepancies (5%

false positive) when typed with 2 strands 1 and position increased

by 3.15% to 96.7%.

DISCUSSION
We have shown that genotypes classified with as few as 4 features

are nearly as sensitive as those classified using sets with 20 features

(93.6% vs 98.3% at a 95% specificity threshold). While additional

features generally improve sensitivity and specificity, they do so at

a diminishing rate. The discrepancy rate for SNP genotypes was

correlated between full and reduced probeset calls, indicating

Figure 1. Probe set layout for Affymetrix 100K chip. Each SNP is assayed with 20 perfect match 25-mer oligonucleotides. The additional 20 mismatch
oligonucleotides are not shown. Both sense and antisense strands are interrogated with 5 features for each allele that differ only at the SNP
nucleotide, denoted A and B. The position of the SNP within the 25mer features is shifted from the central nucleotide (boxed, ‘‘0’’) by 1 or 2
nucleotides in either direction. For this SNP (rs836702), and sample (NA11994) allele B has a stronger normalized hybridization signal, as indicated by
the lighter color and higher hybridization values for most probes. Generally the central base and a particular strand have more discrimination
specificity. The genotype for this individual was called as BB with full and all reduced probesets. This is clear when many other samples are tested
such that the range of intensity categories is known.
doi:10.1371/journal.pone.0000287.g001

Figure 2. Cumulative distribution of discrepancies between HapMap
and RLMM genotypes across probe set combinations Each curve shows
the cumulative proportion of discrepancies between the 90 individuals
for which genotypes were called using the indicated RLMM reduced
probeset compared against the HapMap project. The vertical line at 4
discrepancies corresponds to approximately 95% specificity. 93.6% of all
SNPs had 4 or fewer discrepancies when only the central probe on both
strands was used (red curve). Note the break at 30 discrepancies, at
which point 5 of the 6 curves have all but converged.
doi:10.1371/journal.pone.0000287.g002
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poorly performing SNPs are only slightly improved with additional

features. By contrast, 58% of SNPs are perfectly genotyped with

only 4 features improving to 87% with the full set. This improve-

ment comes at a cost of 5–106 in SNP real estate. By thoughtfully

choosing which SNPs to include, and drastically reducing the

number of features to use for each SNP, large increases in total

SNPs can be realized in new array designs. At the current 5 mm

feature density, GeneChip arrays contain 6.55 million features. At

4 features per SNP .1.5 million SNPs can be achieved. In

addition, as more robust genotype calling methods are developed

(BRLMM, CRLMM) [9], accuracy will increase, further reducing

any necessity for feature redundancy. Together this will allow

a single genotyping array to have SNP densities high enough to

enable true genome-wide association studies in the near future.

SUPPORTING INFORMATION

Figure S1 Cumulative distribution of internal discordances

across probeset combinations Each curve shows the cumulative

proportion of discrepant genotypes obtained when genotypes are

called using the full probe set compared to genotyped called using

the indicated subset of probes. While the total number of

discrepancies is out of a possible 90, only the first 30 are shown,

which is the point at which the 5 curves converge.

Found at: doi:10.1371/journal.pone.0000287.s001 (0.63 MB TIF)

Table S1 Cumulative distribution showing the proportion of

SNPs typed with a maximum number of discrepencies when com-

pared to genotypes generated with all 5 probes and both strands.By

default RLMM uses the information from both the sense and

antisense strands, but we further modified it in two ways. Method 1

selected the strand with the strongest signal averaged across A and B

probe sets. Method 2 selected the strand with the larger difference

between average A and average B allele intensities. Performance for

method 2 was inferior across all parameter combinations, therefore

method 1 results are shown in subsequent figures/tables.

Found at: doi:10.1371/journal.pone.0000287.s002 (0.02 MB

XLS)

Table S2 Cumulative distribution showing the proportion of

SNPs typed with a maximum number of discrepencies when

compared to HapMap genotypes.By default RLMM uses the

information from both the sense and antisense strands, but we

further modified it in two ways. Method 1 selected the strand with

the strongest signal averaged across A and B probe sets. Method 2

selected the strand with the larger difference between average A

and average B allele intensities. Performance for method 2 was

inferior across all parameter combinations, therefore method 1

results are shown in subsequent figures/tables.

Found at: doi:10.1371/journal.pone.0000287.s003 (0.02 MB

XLS)

Table S3 Misclassified genotypes accumulate in heterozygo-

tes.The number of probes per strand and strands used is indicated

in the upper left-hand corner of each box. The numbers represent

counts of genotypes binned by their ‘‘true’’ genotypes (HapMap

calls) compared to how RLMM classified them (RLMM Calls).

When only one probe and one strand are used, a large excess of

misclassified heterozygotes is seen. False positive rate corresponds

to the proportion of misclassified genotypes in each column or

row. Relative amount indicates the proportion of each type of false

positive within the total number of misclassified genotypes.

Found at: doi:10.1371/journal.pone.0000287.s004 (0.02 MB

XLS)
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Figure 3. Correlation among poorly performing SNPs The number of
discrepancies between HapMap calls and RLMM calls made with the
reduced or full feature genotype data. Most SNPs (30,585) are perfectly
called with both the full and reduced sets (peach), while another 3,030
poor SNPs fall along the diagonal and are not improved with data from
additional features. Those few 2,516 SNPs (red box) that do improve
with additional features do not justify redundant designs for all SNPs on
the array.
doi:10.1371/journal.pone.0000287.g003
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