1,441 research outputs found

    Diversity of neglected and underutilized plant species (NUS) in perspective

    Get PDF

    Quantum limit in resonant vacuum tunneling transducers

    Full text link
    We propose an electromechanical transducer based on a resonant-tunneling configuration that, with respect to the standard tunneling transducers, allows larger tunneling currents while using the same bias voltage. The increased current leads to an increase of the shot noise and an increase of the momentum noise which determine the quantum limit in the system under monitoring. Experiments with micromachined masses at 4.2 K could show dominance of the momentum noise over the Brownian noise, allowing observation of the quantum-mechanical noise at the mesoscopic scale

    Algebraic-matrix calculation of vibrational levels of triatomic molecules

    Full text link
    We introduce an accurate and efficient algebraic technique for the computation of the vibrational spectra of triatomic molecules, of both linear and bent equilibrium geometry. The full three-dimensional potential energy surface (PES), which can be based on entirely {\it ab initio} data, is parameterized as a product Morse-cosine expansion, expressed in bond-angle internal coordinates, and includes explicit interactions among the local modes. We describe the stretching degrees of freedom in the framework of a Morse-type expansion on a suitable algebraic basis, which provides exact analytical expressions for the elements of a sparse Hamiltonian matrix. Likewise, we use a cosine power expansion on a spherical harmonics basis for the bending degree of freedom. The resulting matrix representation in the product space is very sparse and vibrational levels and eigenfunctions can be obtained by efficient diagonalization techniques. We apply this method to carbonyl sulfide OCS, hydrogen cyanide HCN, water H2_2O, and nitrogen dioxide NO2_2. When we base our calculations on high-quality PESs tuned to the experimental data, the computed spectra are in very good agreement with the observed band origins.Comment: 11 pages, 2 figures, containg additional supporting information in epaps.ps (results in tables, which are useful but not too important for the paper

    Ruthenium-thymine acetate binding modes: Experimental and theoretical studies

    Get PDF
    Ruthenium complexes have proved to exhibit antineoplastic activity, related to the interaction of the metal ion with DNA. In this context, synthetic and theoretical studies on ruthenium binding modes of thymine acetate (THAc) have been focused to shed light on the structure-activity relationship. This report deals with the reaction between dihydride ruthenium mer-[Ru(H)2(CO)(PPh3)3], 1 and the thymine acetic acid (THAcOH) selected as model for nucleobase derivatives. The reaction in refluxing toluene between 1 and THAcOH excess, by H2 release affords the double coordinating species k1-(O)THAc-, k2-(O,O)THAc-[Ru(CO)(PPh3)2], 2. The X-ray crystal structure confirms a simultaneous monohapto, dihapto- THAc coordination in a reciprocal facial disposition. Stepwise additions of THAcOH allowed to intercept the monohapto mer-k1(O)THAc-Ru(CO)H(PPh3)3] 3 and dihapto trans(P,P)-k2(O,O)THAc-[Ru(CO)H(PPh3)2] 4 species. Nuclear magnetic resonance (NMR) studies, associated with DFT (Density Function Theory)-calculations energies and analogous reactions with acetic acid, supported the proposed reaction path. As evidenced by the crystal supramolecular hydrogen-binding packing and 1H NMR spectra, metal coordination seems to play a pivotal role in stabilizing the minor [(N=C(OH)] lactim tautomers, which may promote mismatching to DNA nucleobase pairs as a clue for its anticancer activity

    The Dynamics of the Global Monsoon: Connecting Theory and Observations

    Get PDF
    Earth's monsoons are complex systems, governed by both large-scale constraints on the atmospheric general circulation and regional interactions with continents and orography, and coupled to the ocean. Monsoons have historically been considered as distinct regional systems, and the prevailing view has been, and remains, an intuitive picture of monsoons as a form of large-scale sea breeze, driven by land-sea contrast. However, climate dynamics is seldom intuitive. More recently, a perspective has emerged within the observational and Earth system modeling communities of a global monsoon that is the result of a seasonally migrating tropical convergence zone, intimately connected to the global tropical atmospheric overturning and localized by regional characteristics. Parallel with this, over the past decade, much theoretical progress has been made in understanding the fundamental dynamics of the seasonal Hadley cells and Intertropical Convergence Zones via the use of hierarchical modeling approaches, including highly idealized simulations such as aquaplanets. Here we review the theoretical progress made, and explore the extent to which these theoretical advances can help synthesize theory with observations and understand differing characteristics of regional monsoons. We show that this theoretical work provides strong support for the migrating convergence zone picture, allows constraints on the circulation to be identified via the momentum and energy budgets, and lays out a framework to assess variability and possible future changes to the monsoon. Limitations of current theories are discussed, including the need for a better understanding of the influence of zonal asymmetries and transients on the large-scale tropical circulation

    Biomaterials in Neurodegenerative Disorders : A Promising Therapeutic Approach

    Get PDF
    Neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury) represent a great problem worldwide and are becoming prevalent because of the increasing average age of the population. Despite many studies having focused on their etiopathology, the exact cause of these diseases is still unknown and until now, there are only symptomatic treatments. Biomaterials have become important not only for the study of disease pathogenesis, but also for their application in regenerative medicine. The great advantages provided by biomaterials are their ability to mimic the environment of the extracellular matrix and to allow the growth of different types of cells. Biomaterials can be used as supporting material for cell proliferation to be transplanted and as vectors to deliver many active molecules for the treatments of neurodegenerative disorders. In this review, we aim to report the potentiality of biomaterials (i.e., hydrogels, nanoparticles, self-assembling peptides, nanofibers and carbon-based nanomaterials) by analyzing their use in the regeneration of neural and glial cells their role in axon outgrowth. Although further studies are needed for their use in humans, the promising results obtained by several groups leads us to suppose that biomaterials represent a potential therapeutic approach for the treatments of neurodegenerative disorders
    • …
    corecore