4 research outputs found

    Evaluation of pneumococcal serotyping in nasopharyngeal carriage isolates by latex agglutination, whole genome sequencing (PneumoCaT) and DNA microarray in a high pneumococcal carriage prevalence population in Malawi

    Get PDF
    BACKGROUND: Accurate assessment of the serotype distribution associated with pneumococcal colonization and disease is essential for the evaluation and formulation of pneumococcal vaccines and informing vaccine policy. METHODS: We evaluated pneumococcal serotyping concordance between latex agglutination, PneumoCaT by whole genome sequencing (WGS) and DNA microarray using samples from community carriage surveillance in Blantyre, Malawi. Nasopharyngeal swabs were collected, following WHO recommendations, between 2015 and 2017, using stratified random sampling among study populations. Participants included healthy children 3–6 years old (PCV13 vaccinated as part of EPI), healthy children 5–10 years (age-ineligible for PCV13), and HIV-infected adults (18–40yrs) on ART. For phenotypic serotyping we used a 13-valent latex kit (SSI, Denmark). For genomic serotyping we applied PneumoCaT pipeline to whole genome sequence libraries. For molecular serotyping by microarray we used the BUGS Bioscience Senti-SP microarray. RESULTS: 1347 samples were analysed. Concordance was 90.7% (95% CI: 89.0–92.2) between latex and PneumoCaT; 95.2% (93.9–96.3) between latex and microarray; and 96.6% (95.5–97.5) between microarray and PneumoCaT. By detecting additional vaccine serotype (VT) pneumococcus carried at low relative abundance (median 8%), microarray increased VT detection by 31.5% compared to latex serotyping. CONCLUSION: All three serotyping methods were highly concordant in identifying dominant serotypes. Latex serotyping is accurate in identifying vaccine-serotypes and requires the least expertise and resources for field-implementation and analysis. However, WGS, which adds population structure, and microarray, which adds multiple-serotype carriage, should be considered at regional reference laboratories while investigating the importance of VT in low relative abundance in transmission and disease

    Evaluation of Pneumococcal Serotyping of Nasopharyngeal-Carriage Isolates by Latex Agglutination, Whole-Genome Sequencing (PneumoCaT), and DNA Microarray in a High-Pneumococcal-Carriage-Prevalence Population in Malawi.

    Get PDF
    Accurate assessment of the serotype distribution associated with pneumococcal colonization and disease is essential for evaluating and formulating pneumococcal vaccines and for informing vaccine policy. For this reason, we evaluated the concordance between pneumococcal serotyping results by latex agglutination, whole-genome sequencing (WGS) with PneumoCaT, and DNA microarray for samples from community carriage surveillance in Blantyre, Malawi. Nasopharyngeal swabs were collected according to WHO recommendations between 2015 and 2017 by using stratified random sampling among study populations. Participants included healthy children 3 to 6 years old (vaccinated with the 13-valent pneumococcal conjugate vaccine [PCV13] as part of the Expanded Program on Immunization [EPI]), healthy children 5 to 10 years old (age-ineligible for PCV13), and HIV-infected adults (18 to 40 years old) on antiretroviral therapy (ART). For phenotypic serotyping, we used a 13-valent latex kit (Statens Serum Institut [SSI], Denmark). For genomic serotyping, we applied the PneumoCaT pipeline to whole-genome sequence libraries. For molecular serotyping by microarray, we used the BUGS Bioscience Senti-SP microarray. A total of 1,347 samples were analyzed. Concordance was 90.7% (95% confidence interval [CI], 89.0 to 92.2%) between latex agglutination and PneumoCaT, 95.2% (95% CI, 93.9 to 96.3%) between latex agglutination and the microarray, and 96.6% (95% CI, 95.5 to 97.5%) between the microarray and PneumoCaT. By detecting additional vaccine serotype (VT) pneumococci carried at low relative abundances (median, 8%), the microarray increased VT detection by 31.5% over that by latex serotyping. To conclude, all three serotyping methods were highly concordant in identifying dominant serotypes. Latex serotyping is accurate in identifying vaccine serotypes and requires the least expertise and resources for field implementation and analysis. However, WGS, which adds population structure, and microarray, which adds multiple-serotype carriage, should be considered at regional reference laboratories for investigating the importance of vaccine serotypes at low relative abundances in transmission and disease

    A pragmatic health centre-based evaluation comparing the effectiveness of a PCV13 schedule change from 3+0 to 2+1 in a high pneumococcal carriage and disease burden setting in Malawi: a study protocol

    Get PDF
    INTRODUCTION: Streptococcus pneumoniae (the pneumococcus) is commonly carried as a commensal bacterium in the nasopharynx but can cause life-threatening disease. Transmission occurs by human respiratory droplets and interruption of this process provides herd immunity. A 2017 WHO Consultation on Optimisation of pneumococcal conjugate vaccines (PCV) Impact highlighted a substantial research gap in investigating why the impact of PCV vaccines in low-income countries has been lower than expected. Malawi introduced the 13-valent PCV (PCV13) into the national Expanded Programme of Immunisations in 2011, using a 3+0 (3 primary +0 booster doses) schedule. With evidence of greater impact of a 2+1 (2 primary +1 booster dose) schedule in other settings, including South Africa, Malawi's National Immunisations Technical Advisory Group is seeking evidence of adequate superiority of a 2+1 schedule to inform vaccine policy. METHODS: A pragmatic health centre-based evaluation comparing impact of a PCV13 schedule change from 3+0 to 2+1 in Blantyre district, Malawi. Twenty government health centres will be randomly selected, with ten implementing a 2+1 and 10 to continue with the 3+0 schedule. Health centres implementing 3+0 will serve as the direct comparator in evaluating 2+1 providing superior direct and indirect protection against pneumococcal carriage. Pneumococcal carriage surveys will evaluate carriage prevalence among children 15-24 months, randomised at household level, and schoolgoers 5-10 years of age, randomly selected from school registers. Carriage surveys will be conducted 18 and 33 months following 2+1 implementation. ANALYSIS: The primary endpoint is powered to detect an effect size of 50% reduction in vaccine serotype (VT) carriage among vaccinated children 15-24 months old, expecting a 14% and 7% VT carriage prevalence in the 3+0 and 2+1 arms, respectively. ETHICS AND DISSEMINATION: The study has been approved by the Malawi College of Medicine Research Ethics Committee (COMREC; Ref: P05.19.2680), the University College London Research Ethics Committee (Ref: 8603.002) and the University of Liverpool Research Ethics Committee (Ref: 5439). The results from this study will be actively disseminated through manuscript publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT04078997

    Quality of antibody responses by adults and young children to 13-valent pneumococcal conjugate vaccination and streptococcus pneumoniae colonisation

    Get PDF
    Childhood pneumococcal conjugate vaccine (PCV) protects against invasive pneumococcal disease caused by vaccine-serotype (VT) Streptococcus pneumoniae by generating opsonophagocytic anti-capsular antibodies, but how vaccination protects against and reduces VT carriage is less well understood. Using serological samples from PCV-vaccinated Malawian individuals and a UK human challenge model, we explored whether antibody quality (IgG subclass, opsonophagocytic killing, and avidity) is associated with protection from carriage. Following experimental challenge of adults with S. pneumoniae serotype 6B, 3/21 PCV13-vaccinees were colonised with pneumococcus compared to 12/24 hepatitis A-vaccinated controls; PCV13-vaccination induced serotype-specific IgG, IgG1, and IgG2, and strong opsonophagocytic responses. However, there was no clear relationship between antibody quality and protection from carriage or carriage intensity after vaccination. Similarly, among PCV13-vaccinated Malawian infants there was no relationship between serotype-specific antibody titre or quality and carriage through exposure to circulating serotypes. Although opsonophagocytic responses were low in infants, antibody titre and avidity to circulating serotypes 19F and 6A were maintained or increased with age. These data suggest a complex relationship between antibody-mediated immunity and pneumococcal carriage, and that PCV13-driven antibody quality may mature with age and exposure
    corecore