542 research outputs found

    Examination of the effects of solids content on thickened gold mine tailings sedimentation and self-weight consolidation

    Get PDF
    Abstract: Thickening is being increasingly adopted by the mining industry because of its economic and environmental attributes, such as decreased amounts of water released following deposition and a smaller footprint of the tailings site. This study presents an assessment of the continuous process of sedimentation and the self-weight consolidation of slurry and thickened mine tailings. The results of a series of settling column tests performed with specimens with solids contents between 50 % and 72 % are presented and discussed. Lower solids contents that are more characteristic of slurry tailings were also included to cover a wide range of settling behavior. High-precision monitoring of pore water pressure was used to identify the transition from sedimentation to self-weight consolidation, which likely occurs between solids contents of 65 % and 68 % for this material, and it highlighted the fact that the combination of these two settlement processes accelerates ue dissipation. The displacement results for the tailings–water interface corroborate values in the technical literature related to the settlement of suspensions. Equilibrium was reached within a narrow time range (i.e., 400 to 500 min) despite the wide range of initial solids content in the slurries tested (i.e., 50 % S to 65 % S)

    Impacts of Electric Road Systems on the German and Swedish Electricity Systems—An Energy System Model Comparison

    Get PDF
    This study analyses the impacts of electrification of the transport sector, involving both static charging and electric road systems (ERS), on the Swedish and German electricity systems. The impact on the electricity system of large-scale ERS is investigated by comparing the results from two model packages: 1) a modeling package that consists of an electricity system investment model (ELIN) and electricity system dispatch model (EPOD); and 2) an energy system investment and dispatch model (SCOPE). The same set of scenarios are run for both model packages and the results for ERS are compared. The modeling results show that the additional electricity load arising from large-scale implementation of ERS is mainly, depending on model and scenario, met by investments in wind power in Sweden (40–100%) and in both wind (20–75%) and solar power (40–100%) in Germany. This study also concludes that ERS increase the peak power demand (i.e., the net load) in the electricity system. Therefore, when using ERS, there is a need for additional investments in peak power units and storage technologies to meet this new load. A smart integration of other electricity loads than ERS, such as optimization of static charging at the home location of passenger cars, can facilitate efficient use of renewable electricity also with an electricity system including ERS. A comparison between the results from the different models shows that assumptions and methodological choices dictate which types of investments are made (e.g., wind, solar and thermal power plants) to cover the additional demand for electricity arising from the use of ERS. Nonetheless, both modeling packages yield increases in investments in solar power (Germany) and in wind power (Sweden) in all the scenarios, to cover the new electricity demand for ERS

    Role of IFN-gamma and IL-6 in a protective immune response to Yersinia enterocolitica in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Yersinia </it>outer protein (Yop) H is a secreted virulence factor of <it>Yersinia enterocolitica </it>(Ye), which inhibits phagocytosis of Ye and contributes to the virulence of Ye in mice. The aim of this study was to address whether and how YopH affects the innate immune response to Ye in mice.</p> <p>Results</p> <p>For this purpose, mice were infected with wild type Ye (pYV<sup>+</sup>) or a YopH-deficient Ye mutant strain (Δ<it>yopH</it>). CD11b<sup>+ </sup>cells were isolated from the infected spleen and subjected to gene expression analysis using microarrays. Despite the attenuation of Δ<it>yopH in vivo</it>, by variation of infection doses we were able to achieve conditions that allow comparison of gene expression in pYV<sup>+ </sup>and Δ<it>yopH </it>infection, using either comparable infection courses or splenic bacterial burden. Gene expression analysis provided evidence that expression levels of several immune response genes, including IFN-γ and IL-6, are high after pYV<sup>+ </sup>infection but low after sublethal Δ<it>yopH </it>infection. In line with these findings, infection of IFN-γR<sup>-/- </sup>and IL-6<sup>-/- </sup>mice with pYV<sup>+ </sup>or Δ<it>yopH </it>revealed that these cytokines are not necessarily required for control of Δ<it>yopH</it>, but are essential for defense against infection with the more virulent pYV<sup>+</sup>. Consistently, IFN-γ pretreatment of bone marrow derived macrophages (BMDM) strongly enhanced their ability in killing intracellular Ye bacteria.</p> <p>Conclusion</p> <p>In conclusion, this data suggests that IFN-γ-mediated effector mechanisms can partially compensate virulence exerted by YopH. These results shed new light on the protective role of IFN-γ in Ye wild type infections.</p

    A global Arnoldi method for the model reduction of second-order structural dynamical systems

    Get PDF
    Abstract In this paper we consider the reduction of second-order dynamical systems with multiple inputs and multiple outputs (MIMO) arising in the numerical simulation of mechanical structures. In commercial software for the kind of application considered here, modal reduction is commonly used to obtain a reduced system with good approximation abilities of the original transfer function in the lower frequency range. In recent years new methods to reduce dynamical systems based on (block) versions of Krylov subspace methods emerged. This work concentrates on the reduction of second-order MIMO systems by the global Arnoldi method, an efficient extension of the standard Arnoldi algorithm for MIMO systems. In particular, a new model reduction algorithm for second order MIMO systems is proposed which automatically generates a reduced system of given order approximating the transfer function in the lower range of frequencies. It is based on the global Arnoldi method, determines the expansion points iteratively and the number of moments matched per expansion point adaptively. Numerical examples comparing our results to modal reduction and reduction via the block version of the rational Arnoldi method are presented

    Promoting collaboration between livestock and wildlife conservation genetics communities

    Get PDF
    The collaboration between livestock and wildlife conservation genetics communities has the potential to help promote shared priorities, with respect to emerging technologies and new analytical approaches such as next generation sequencing incorporating adaptive variation. The GLOBALDIV Consortium recently organized an international workshop held at the Ecole Polytechnique Fédérale de Lausanne (Switzerland) including a whole-day session with contributions aimed at taking stock of the situation regarding the extent of information and methodology exchange between the two communities. Discussions permitted the identification of potential benefits of further promoting cooperation in the context of genetic monitoring in particular, a central concept to current concerns for both the livestock and wildlife conservation communitie
    corecore