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Abstract

In this paper we consider the reduction of second-ordermycel systems with multiple inputs and multiple outputs
(MIMO) arising in the numerical simulation of mechanicalsttures. In commercial software for the kind of applica-
tion considered here, modal reduction is commonly used tailvha reduced system with good approximation abilities
of the original transfer function in the lower frequencygan In recent years new methods to reduce dynamical sys-
tems based on (block) versions of Krylov subspace metho@sgad. This work concentrates on the reduction of
second-order MIMO systems by the global Arnoldi method, figient extension of the standard Arnoldi algorithm
for MIMO systems. In particular, a new model reduction aithon for second order MIMO systems is proposed
which automatically generates a reduced system of givegr@proximating the transfer function in the lower range
of frequencies. It is based on the global Arnoldi methodedaines the expansion points iteratively and the number
of moments matched per expansion point adaptively. Numlegiamples comparing our results to modal reduction
and reduction via the block version of the rational Arnoldithrod are presented.
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1. Introduction
In the context of the numerical simulation of machine toelsmsd-order dynamical systems of the form
MX(t) + Dx(t) + Kx(t) = Fu(t), y(t) = CuX(t) + Cpx(t) 1)

arise, whereM, K, D € R™", F € R™™, C,,C, € R¥", x(t) € R", u(t) € R™, y(t) € R%.

The system matrices considered are large, sparse, andymomedric. The matriX is non-singular. The mass
matrix M may be singular. In that case one obtains a systemfl&rdntial algebraic equations. In generalandq
will be larger than one, so that the system is multi-inputtimultput (MIMO). All of this accounts for unacceptable
computational and resource demands in simulation and @larftthese models. In order to reduce these demands
to acceptable computational times, usually model ordergtoh techniques are employed which generate a reduced
order model that captures the essential dynamics of thersyahd preserves its important properties. That is, one
tries to find a second order system of reduced dimensiem

NIX() + DX(1) + KX() = Fu(®).  9() = () + CoX(D), @

which approximates the original system in some sense, wieiz K € R™", F € R™™, C,,C, € R¥", (t) € R,
u(t) e R™, y(t) € RY.
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In the last years various methods to reduce second-ordandggal systems have been proposed, see, e.g., [1, 2, 3].
As model reduction of linear first-order systems is muchfeirdeveloped and understood, it is tempting to transform
the original second-order system (1) to a mathematicalljvadent first-order system
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whereE, A € R?™2" B e R?™M C e R¥", zt) € R?", u(t) € R™, y(t) € RY. Various other linearizations have been
proposed in the literature, see, e.g., [4, 5, 6]. The lirzagion (3) is usually preferred as it is symmetry preserving
in caseK, M, D are symmetric. The system considered here is non-symmetrione of the various other possible
linearizations could be used instead. Note that the tramsftion process doubles the dimension of the system. The
corresponding reduced system is of the form

Ex(t) = Az(t) + But)  §(t) = C2(), (4)

whereE, Ac R™, Be R™™ C e R, 2(t) € R, u(t) € R™, () € RY.

In the engineering context of our application modal redarefi7] is most common. Here we will consider pro-
jection based model reduction based on Krylov subspaceadsttin the recent years various new Krylov subspace
based methods to reduce first- and second-order systembbengroposed, see, e.g., [8, 9, 10] and the references
therein. We will consider methods which generate maticesR?™" with VTV = |, such that the reduced first-order
system (4) is constructed by applying the Galerkin projedil = VV' to (3)

E=V'EV. A=V'AV, B=V'B, and C=CV (5)

Similarly, the reduced second-order system (2) is contediay applying a Galerkin projection to (1) such that

M=VTMV, D=V'DV, K=V'KV, F=V'F, C,=C,v and C,=CV, 6
p p

whereV € R™ with VTV = I,. The matrixV can be constructed iteratively by employing Krylov subspat
gorithms, in particular the block Arnoldi algorithm. It iseli-known that Krylov subspace based methods are not
guaranteed to yield reduced order models with the best hperformance in the entire frequency domain; only local
approximation around the expansion point can be expecteerefore, multi point moment matching methods have
been introduced [11, 12, 13], see Section 2 for a short reviev{14] the choice of expansion points is discussed,
in [15] an algorithm choosing the expansion points iterdyivcalled Iterative Rational Krylov Algorithm (IRKA)
and in [16, 17] adaptive multi point moment matching methbdge been proposed. The global Arnoldi method
[18] is similar to the standard Arnoldi method except that $kandard inner product is replaced by the inner product
(Y,Z)r = tracel{TZ) whereY,Z € R™S. The associated norm is the Frobenius ndrm|r. The global Arnoldi
algorithm constructs aR-orthonormal basi¥y, Vs, .. ., Vi of the Krylov subspac& (¥, T),¥ € R™", T € R™S,
Here a system of vectors (matricesi1*S) is said to beF-orthonormal if it is orthonormal with respect tq -)g.

The global Arnoldi algorithm is computational cheaper thiae block Arnoldi method. It has been used for model
reduction of first-order systems (3), see [19, 20, 21, 22%dation 3 a short introduction of the global Arnoldi method
is presented. Further its extension to model reduction afrse order MIMO systems is discussed. In the context of
the global Arnoldi algorithm, an adaptive-order global Aldi algorithm has been proposed [19, 17]. This algorithm
adaptively determines the number of expansions for a fixedfssxpansion points. Here we propose a combination
of this algorithm and a modified version of IRKA [13] to redusszond-order MIMO systems. The algorithm is based
on the global Arnoldi method, determines the expansiontpaiaratively and the number of moments matched per
expansion point adaptively. Numerical experiments arergin Section 4.

2. Model reduction using block Arnoldi type methods
A k-th order Krylov subspace is defined by

Ki(P, q) = spargq, Pg, P, - - - , P<"'q}, )
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whereP € R™™ andqg € R". The Arnoldi method [23, 24] applied to the paP, () produces a matri¥/ with
orthonormal columns which span the Krylov subspag€P, g) (in case no breakdown occurs during the computation).
In order to be able to treat MIMO systems, we will need to cdesblock Krylov subspaces

7<‘k(F>’ Q) = SpaﬁQ’ PQ’ PZQ’ Tt PkilQ}’ (8)

whereP € R™" and the columns of) € R™¢ are linearly independent. Such a block Krylov subspace fttarting
vectors (assembled @) can be considered as a uniortdérylov subspaces defined for each starting vector. Usually,
the computation of an orthonormal basig; € R™ ! with k- ¢ = r is achieved by employing a block Arnoldi
algorithm, see Algorithm 1 [25].

Algorithm 1 Block Arnoldi method
Input: matrices P,Q
Output: transformation matrix/
1: function [V] = Block_Arnoldi(P,Q)
2: compute theQRfactorizationV,R = Q
3: V= [V]_]
4. for j=1,2,..,k do
W = AV,
fori=1,...,jdo
Hij = VTw
W =W - VH;
end for
10:  compute theQRfactorizationVj,1Hj,1; = W
11: V =[V Vju]
12: end for

© 0o N’

The columns ofVyg = [V1, Vo,..., Vi] with Vj € R™’ are an orthogonal basis for the block Krylov subspace
Ki«(P, Q) provided none of the upper triangular matri¢¢sy ; in Algorithm 1 are rank-deficient. As in the standard
Arnoldi algorithm re-orthogonalization is necessary iderto keep the computed columns\¢forthogonal. The
following relation will hold

AV = VigHig + [0, ..., 0, Vi 1Hks 1.4

whereHy is a block upper Hessenberg matrix.

2.1. First order systems
The transfer function of a first-order system (3) is the limaapping of the Laplace transformation of the input to
the output
H(s) = C(sE- A)!B.
After expansion in a Laurent expansion series around annsima points, one obtains the momenitg(s), | =
0, .., oo of the transfer function

H9 = > hi(so)(s- ),
j=0
where hj(s) = C[(A-sE)EJ)(A- E)B.

Consider the block Krylov subspa@&(P, Q) (8) for
P=(A-sE)E € R and Q = (A- $E) 1B e R?™™

Assume that an orthogonal basis for this block Krylov subspa generated using the block Arnoldi method. Here,
and in the rest of the paper, we will assume that no breakd@eurced during the computations so that the column-
space of the resulting matrix spans the block Krylov subspag&(P, Q). Applying the similarity transformation (5)
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(with V = Vjg € R¥™ VTV = |, andr = k- m) yields a reduced system whose transfer function matcheasttthe
first k moments of the transfer function of the original system [Bjat is, at least the fir& momentsh; i(s0), of the
transfer functiorH(s) of the reduced system (4) equal the first moméntso), of the transfer functlorh-l(s) of the
original system (3) at expansion pomgt

hj(so) = hj(s0), j=0,1,-- k-1

An alternative is to use more than one expansion point, ¢kigd to multi point moment matching methods called
Rational Krylov methods [12]. Assume thia¢xpansion points, i = 1,2,--- i are considered. The column vectors
of the matrixV are determined from thieblock Krylov subspaces generated by

P=(A-sE)E and Q=(A-sE)'B, i=12,...,i. (9)

From each of these subspacess k; - m column vectors are used to generdte R>™" (with r = : 1 1i). Then at

leastk; moments are matched per expansion pgint

his)=hi(s), j=01- k-1 i=12-.] (10)
if the reduced system is generated by (5). .
In [13] the choice of expansion poingsi = 1,...,i is discussed. Starting from an initial set of expansion {soin
a reduced order system is determined. Then a new set of égpgnts is chosen ag = —1;,i = 1,...,1 where

A; are the eigenvalues of the matrix pengi- 1A with E, A as in (4), ordered such thaty| > |12 > ... > |4].
This algorithm is called Iterative Rational Krylov Algdnin (IRKA) [13]. Here a modified version of IRKA is
proposed: A new set of expansion points is chosen from thefssgenvalues ordered by their imaginary part such
that Im(11)] < [Im(12)| < ... < |Im(4)|. Starting froms; = Im(11) -1 ¢ = V-1) the next expansion points
s.i = 2,...,i are chosen as = Im(%) - .. As expansion points lying a bit apart yield better appraation results,
this choice of the expansion points is refined such that iftiatdve requirgs_; — s| > €, wheree is chosen by the
user and defines a (minimum) distance between two adjaceansion points. Hence, j§ — si| < €, we do not
chooses, = Im(Ay) - 1, but tests, — 5| for s, = Im(A3) - i. If this is still small thare, we next test fols, = Im(Ay) - 1,
until we have found anly such thats, = Im(JAy) - 1 yields|s, — 1| > €. Next we chooses; is the same fashion
starting fromAy, 1 such thats; — s;| > €. Unlike IRKA, this method cannot be guaranteed toHseoptimal but after
a few iterations good approximation results of the tranfifection, especially for low frequencies, are obtainede Th
approach described here is summarized as the ModifiediieRational Arnoldi algorithm (MIRA) in Algorithm 2.

In [17] a strategy for an adaptive-order model reductionrodtbased on the Arnoldi method is discussed. Given
a fixed set of expansion poingsi = 1,...,i and the reduced dimension an adaptive scheme for automatically
choosing; about each expansion poistis proposed, see Chapter 3.2.

2.2. Second order systems
The transfer function of a second-order system is given by tplace transformation of (1):

H(9) = (Cp + SC)(M + sD+ K)*F.

After expansion in a Laurent expansion series around annsipa pointsy one obtains the momenig(s), | =
0, .., oo of the transfer function

H(9 = > hi(s)(s- o),
j=0
where 3 L ‘ L
hj(s0) = (Cp + SCVI(-$M — D = K) M (-£M - 5D - K)'F

with D = 2M + D, K = €M + 5D + K andC, = Cp, + 5%Cy. (In an abuse of notation, we denote the transfer
function (the moments) of the first- and the second-ordetesybyH (h;). It will be clear from the context which



Algorithm 2 Modified Iterative Rational Arnoldi (MIRA)
Input: system matrices, initial expansion poistsi = 1,...,1,
r; = m-k;, tolerancdol, €
Output: reduced system of order= mi k
1: sets’ so that may, 1, ;1" - s| > tol
2: while max 1, ;15”9 - s| > tol do

3 V=[]

4. for k=1,2,...,kdo

5: for i=1,2,...,ido

6 computeV; using the block Arnoldi method foP and Q as in (9) resp. as in (11) (modified so that

re-orthogonalizing against the entire mafwbis used)

7: V =[V V]

8: end for

9:  end for

10: compute reduced system matrices withy (5) resp. (6)

11: compute the eigenvaluds, j = 1...,r of the reduced system ordered such fhafi,)| < [Im(1)] < ... <
Im(a,)|

122 e g, fori=1,...,1

13:  choose new expansion poirgsas explained at the end of Section 2.1
14: end while

15: compute the congruence transformation Witby (5) resp. (6).

one is refered to.) Here we consider only the special cassgstéms with no or proportional damping matrix. The
block Krylov subspac&i(P, Q) with

P=—(M+%D+K)*M and Q= —($M + D + K)'F

is used to generate the transformation mattix¥n [1] it was shown, that the transfer function of the systrexuced
by applying the congruence transformation (6) witlmatches at least the firktmoments of the transfer function of
the original system. )

If more than one expansion point is used, the 22:1 ri, ri = ki - mcolumn vectors of matri¥ are determined
from the block Krylov subspaces generated by

P=—(M+sD+K)M and Q=—($M + sD + K)'F. (11)

The transfer function of the system reduced by applying ttrgjouence transformation (6) withmatches at least the
first ki moments of the transfer function of the original system pa@sion point [1]. As in the case of first-order
systems, the iterative approach MIRA for the choice of thpa@sion pointss can be used. The pseudo-code of
MIRA is given as Algorithm 2.

3. Model Reduction using the Global Arnoldi Method

The global Krylov method was first proposed in [26, 18] fonéad linear equations with multiple right hand sides
and Lyapunov equations. Applications to model order redustof first-order systems are studied in [19, 20, 21, 22].
It was also used for solving large Lyapunov matrix equat[@i$. The global Krylov method is similar to the standard
Krylov method except that the standard inner product isaegd by the inner producy, Z)r = tracel{"2),Y,Z e
R™S, The associated norm is the Frobenius ndirnilz. A system of vectors (matrices) iR™* is said to beF-
orthonormal if it is orthonormal with respect {9 -)r.

The global Arnoldi algorithm [18] (see Algorithm 3) constts anF-orthonormal basi¥s, Vo, . .., Vic with V; €
R™S of the Krylov subspac&i (¥, T), ¥ € R™", T € R™S; i.e.,

Vi,Vppp = 0 i#jij=1...k
Vi,Vppr = L



Algorithm 3 Global Arnoldi method
Input: matrices?, Y
Output: transformation matrix/

1: function [V] = Global Arnoldi(‘¥, T)

2: V1 = T/IITlr

3V =[Vq]

4. for j=1,2,..,k do
5: W= "PV]'

6: fori=12,..jdo
7 hij = (Vi, W)e

8: W=W- hijVi
9: end for

10:  hjpj = IWIle
11: Vj+1 = W/hj+l,j
122 V=[V Vjul
13: end for

In terms of computational time, the global Arnoldi methodaister than the block Arnoldi method. Comparing
both algorithms, the block Arnoldi method require Q& decomposition ofNV in every step (line 2 and 10), while
the global Arnoldi method only needs the division by the Femiis norm ofV. Moreover, the block Arnoldi method
requires the computation &fTW in line 7, while the global Arnoldi method only needs the &aif that matrix.
Finally, in line 8 of the algorithm, the block Arnoldi methadquires a matrix-matrix-product, while the global
Arnoldi method only needs a scalar-matrix-product.

If s=1, the global Arnoldi algorithm reduces to the standard Adialgorithm. LetVy = [V1 Vo ... V] € R™,

r = k- sandHy the corresponding x k upper Hessenberg matrix. The following relation will hold

YV = Vi(Hk® Is) + hia k[0, . . ., 0, Vi 1]

Here® denotes the Kronecker product of two matrides R andY € R™

XY x2Y oo XY

X21Y  X2Y oo XouY " ey
XY = : . : . :[XiJY]i,jzleR .

XY  x2Y oo XadY

Note that the Hessenberg mattil in the global Arnoldi algorithm is of dimensidkx k while for the block
Arnoldi algorithm Hyg is a block Hessenberg matrix of dimensiék x k. Moreover, as noted in [18], linear
dependence between the column vectors of the generateides®tti = 1,. .., k has no &ect on the global Arnoldi
algorithm. The major dference between the global and the block Arnoldi algorithes In the computed basis
of the Krylov subspace: the global Arnoldi algorithm allotesgenerate th&-orthonormal basis, while the block
Arnoldi algorithm constructs an orthogonal basis. The ioasrconstructed by the block Arnoldi algorithm have their
columns mutually orthogonal. Finally, note that the bloakéldi algorithm constructs an orthonormal basis of the
block Krylov subspacé (¥, T) c R" while the global Arnoldi algorithm generates Brorthonormal basis of the
matrix Krylov subspac&i(¥, ) c R™s,

If the global Arnoldi method and the block Arnoldi method applied to the same matrix pal¥(T), the resulting
matricesVyy andVyg both span the same Krylov subsp&Cg'?, ). The orthonormalization of the bases vectors of
K(P, T) is the only diterence whether constructed by the the block- or the glolablli method. In [12, Chapter
3] itis shown that the moment matching property (10) doeg dapend on the fact that the columnswE Vg resp.

V =V span the Krylov subspacki(P, Q) with (P, Q) as in (9) resp. in (11). It does not depend on the Waig
computed or whether its columns have a certain additioregdgnty. Hence, the moment matching property holds for
reduction methods based on the global Arnoldi algorithmelsas for reduction methods based on the block Arnoldi
algorithm.
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3.1. First order systems

The global Arnoldi method is the standard Arnoldi methodlgito the matrix pair (® P)), vec Q)) = (¥, ),
where the inner product is replaced ¥ Y)r = vec (X)"vec (Y) = trace"Y). Here vec () denotes the usual vector
stacking operation [28]

vec @) = (ZaZo--- Za)" € RY, Z=[Z1Zp - ZJ) €R™, Z;€eRY, j=1,...,V.

For vec P!, Q) we have ‘ ‘
vec P, Q) = (I ® P)) vec Q).

Therefore, withP andQ as in (9), the moments of the system (3) can be associatecdweltor-function.
Assume that affr-orthogonal basis for the Krylov subspakg(P, Q) for (P, Q) as in (9) is generated using the
global Arnoldi method. Applying the projectidih = V(k)V('L) to (3) leads to the reduced system with

E=VEViw, A=V AV, B=V,

©B and C=CVy. (12)

AsVy is F-orthonormal, the pseudo-inversg, = (Vg Vi) ™V, has to be used instead ¢}, .

If the global Arnoldi method and the block Arnoldi method agplied to the matrix pairR Q) as in (9), the
moment matching property (10) discussed for the block Atrfzhsed model reduction is still valid. The first moments
h i(s0), of the transfer function of the reduced system (4) are éingéesas those of the original system (3). The Iterative
Rational Arnoldi algorithm as in Algorithm 2 is easily mo@ifi to make use of the global Arnoldi method instead
of the block Arnoldi algorithm. Besides the change of thevathm to be used in line 6 of Algorithm 2 the reduced
systems have to be determined using (12) (resp. (13)). Thatireg algorithm is called Iterative Rational Global
Arnoldi algorithm (IRGA).

3.2. Second order systems

Assume that aifr-orthogonal basi¥/, for the Krylov subspac&i(P, Q) for (P, Q) as in (11) is generated using
the global Arnoldi method. The reduced system is then giyeadplying the projectiofil = V(k)V("l'() to (1) such that

M =VyMVe, D=V DV, K=VyKVy,

ﬁ = V(-L) F, ép = CpV(k), and év = CVV(k).
If the global Arnoldi method and the block Arnoldi method agplied to the matrix pairR Q) as in (11) the
moment matching property discussed for the block Arnoldsemodel reduction is here still valid. The first moments

ﬁ,—(so), of the transfer function of the reduced system (13) ares#ime as those of the original system (1).

In the previous section, the were chosen am - k; so that for each expansion point at legsmoments are
matched. Here a fferent approach suggested in [19, 29] is used which adaptiatermines the;. The Adaptive
Order Rational Global Arnoldi (AORGA) algorithm descritesadaptive scheme for automatically choosiraout
each expansion poirst given a fixed set of expansion poirgs i = 1,...i and the reduced dimensionIn the j-th
iteration of AORGA an expansion point from the set of fixedaxgion points corresponding to the maximum output
moment error will be chosen to compute Consequently, the corresponding reduced system wildlifed greatest
output moment improvement among all reduced systems oftine ®rder and the same set of expansion points.

In [17] the exactj-th moment error of reduced first-order systems at an expan®iints has been determined
analytically

(13)

Ihj(s) - hi(s)llF = lIh«(s) C RITY(S)IlE, (14)

~ -1
whereh;(s) andhj(s) are thej-th moments of the original resp. the reduced first-ordetlesy,(s) = [1 IR®(s)IIE,
k=1
andR¥(s) is the residual at expansion pomidefined by

R(s)=(SE-A)'B, fork=1, and R{s)=(SE-A)EVi1, fork=2...,j-1

7



In the j-th iteration of AORGA expression (14) is used to determime ¢éxpansion point-j corresponding to the
maximum moment error by _
oy = maxiihi(s) C RISl

For more details of the algorithm see [19].

Here an algorithm to reduce second-order systems combihisg@pproach and IRGA is proposed. This algo-
rithm, called Adaptive Iterative Rational Global Arnoldgarithm (AIRGA), computes a reduced system by deter-
mining the expansion points iteratively and the number ofctmed moments per expansion point adaptively. The
method is given in pseudo-code as Algorithm 4. Modifying)(ti¢ changing the first-order system output ma@ix
to (Cp + SCy), whereC, andC,, are the second-order system output matricesRé(sl) to

R{(s)=—($M +sD+K)'F, fork=1, and RYs)=—(M+sD+K) MV, fork=2...,j-1,
the error of thgj-th momenﬁj(s) at expansion poirg, i = 1,...,1 of the second-order system is given by
IIhj(s) = hi(s)llE = Ihe(s)(Cp + SCHRI(S)IIe,

whereh;(s) and ﬁ,—(s) are thej-th moments of the original resp. of the reduced secondragitem. In thej-th
iteration of Algorithm 4 (line 12) this approach is used tdetmine the expansion point; corresponding to the
maximumj-th moment error of the reduced second-order system by

o = maxie(s) (Cp + SC) RI(S)le-

4, Numerical Results

Our test model is a simplified, abstract mechanical streotdia machine tool modeled using the FEM environ-
ment MSC.PATRANMSC.NASTRAN® (see Figure 1, here TCP denotes the tool center point). Bhenadel is of

.
| [ oo |

Source: iwh ‘d/x‘

Figure 1: FE model of a simplified, abstract mechanical strec

ordern = 51816, it has four inputsng = 4) and eight outputsy(= 8). The damping matri® was chosen as Rayleigh
damping

D=a-M+g-K,
i.e. D is proportional to the mass matri and the stffness matriX. The parameters for the proportional damping

matrix were chosen as= 0.02 and3 = «/1500.
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Algorithm 4 Adaptive Iterative Rational Global Arnoldi (AIRGA)

Input: matricesM, D, K, F, Cp,, C,, number of columns of matrik m, initial expansion points;, i = 1,. ..,1, reduced
dimensiorr, tolerancetol,e A
Output: reduced matriced, D, K, F, Cy, Cy, number of expansions, i = 1,...,i, sequence of used expansion

pointsoj, j=1,...,[r/m]
1: sets’ so that may 1, ;15" - s| > tol

2: J:=[r/m]

3: while max ;5 7,1s"® - s| > tol do

4. V=[]

5. for eachs do

6: RO(s) := (M + sD + K)IF
7: h(s) =1

8: end for

9: /* compute transformation matrix'*

100 for j=1,2,...,3 do

11: /* Select the expansion point with maximum output momentretrfo
12: Chooses with max [Ih.(s)(Cp + SC\)RITI(s)IIF

13: Letoj = s be the expansion point in theth iteration

14: /* Generatem new F-orthonormal vectors at; */

15 hjja(og) = IR (o)l

16: V]' = R(Jfl)(O'j)/hj,j,l(O'j)

17: hﬂ(O'j) = hﬂ(O'j) . hj,j,l(O'j)

18: /* UpdateR“)(As) for the next iteration

19: for i=1,...,i do

20: if (5 ==o0j) then

21 RI(s) := (M + D + K)IMV;
22: else

23; Ri)(s) = RI-Y(s)

24: end if

25: for t=1,2,...,j do

26: hj(s) := traceftRO)(s))
2: RO(s) := RO(s) - hej(s)V4
28: end for

29: end for

30:  end for

31: V= [V1V2 ce VJ]

322 V=V(,1:r)

33:  /*transform matrices M, D and K/*

34:  computeM = VIMV, D = VDV andK = VKV as in (13)

35:  /*determine a new set of expansion poinfs *

36: compute the eigenvalugg, j = 1...,r of the reduced system ordered such fhaf1,)| < [Im(22)] < ... <
[Im(a,) R

3 e g, fori=1,...,i

38: choose new expansion poirgsas explained at the end of Section 2.1

39: end while

40: /* Yield reduced system matrices by congruence transfoondi

41: computeM, D, K, F,C,, Cy as in (13).

The algorithms were implemented in MATLAB/ersion 7.1 (R14) and the computations were performed on a

IMATLAB is a trademark of The MathWorks, Inc.



AMD Athlon(tm) 64 X2 Dual Core Processor 448@nd 2 GB RAM. The second-order system was reduced by the
following methods:

1. MIRA for systems without damping matrix which generaté&aaderkin projection (6) fronP andQ as in (11)
by the block Arnoldi method (RA).

2. IRGA for systems without damping matrix which generatg@sajection (13) fromP andQ as in (11) by the
global Arnoldi method (GA).

3. AIRGA for systems without damping matrix which generagsojection (13) fronP andQ as in (11) by the
adaptive global Arnoldi method (AGA).

4. MIRA for systems with proportional damping which genesa& Galerkin projection (6) fro®® andQ as in
(11) by the block Arnoldi method (RA°D).

5. IRGA for systems with proportional damping which genesa projection (13) fror® andQ as in (11) by the
global Arnoldi method (GAPD).

6. AIRGA for systems with proportional damping which genesaa projection (13) fror® andQ as in (11) by
the adaptive global Arnoldi method (AGRD).

The first three methods are modified versions of the Ratiémadidi method for first-order systems. They reduce
second-order systems without damping matrix [12, 30]. Thahey assum® = 0 in (11) and compute a reduced
system (2) withD = 0. A damped reduced system is obtained by adding the propaitdamping matriXD =
aM + BK. The last three methods exploit the special structure ofptioportional damping matrix [1]. In case
complex valued expansion points are used, the last thrdeeddtiove algorithms generate complex valued matrices
V. The algorithms RA, GA and AGA generate real matrices evarage of complex valued expansion points.

Once a complex expansion pointis used, in the algorithmetoge systems with proportional damping matrix, all
further computations involve complex arithmetic. As thdueed systems are commonly used for further simulation
in NASTRAN or SIMULINK which requires real systems, the falling considerations had to be taken into account.
Before computing the congruence transformation the toansdtion matrixV has to be transformed back to a real
matrix. This can be done, e.g., as follows

[V.Rl = ar([Re(V(:, 1 :Tr/27)) Im(V(, 1 : [r/2])]). (15)

In our implementation a rank-revealif@R decomposition was used to compute (15). By this processuh&ar

of columns ofV doubles. Therefore, in setting up the real transformatiatrices only the first/2 columns ofV
were used, so that the resulting system is of the desired ordiote that this process halves the number of matched
moments.

The methods were started with the four initial expansiom{so2rz, 5007z, 1000 and 150@:. To match at least
the first two moments (methods RA, GA and AGA) resp. at leasffilst moment (methods RRD, GAPD and
AGA _PD) of the original systems in our computations, the redmnatnethods where used wikh= 2,1 = 4,tol = 0.1
ande = 750. With these parameters the reduced dimensiorrwak; - i - m = 2- 4 - 4 = 32. With the procedure to
choose the expansion poirgsas explained at the end of section 2.1 the last expansionigdotated at frequencies
higher thari - e/(2r) = 358 Hz. Hence, we expect a good approximation of the frequemge from 0 Hz to 358 Hz
at least. Besides the methods already mentioned, a seecdedmodal reduced system of dimension 32 (mdxtal
was generated by NASTRAN in order to compare the approxanatsults of the various reduction methods. In
Table 1 essential information about the results obtaingh thie various methods is summarized. The sequence of
expansion points adaptively determined in the last itenatiy the method AGA was,, , S1, 3, 4, S, S3, 4 resp.

S1, &, 3, S4, S1, 2, 3, 4 by the method AGAPD. The numerical results demonstrate the applicabilithefroposed
methods based on the global Arnoldi method. The approxanatf the transfer function and the time response by
reduced systems obtained with global Arnoldi methods angpawable to those obtained with block Arnoldi reduced
systems. All Krylov based reduced systems approximaterigéal system transfer function more accurate than the
modal reduced system of the same order.

In order to compare the fierent methods the approximation of the original transfacfion and the time response
of the reduced systems were analyzed. To assess the quidhty@duced systems the following errors were used:
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methods for systems without damping matrix
expansion points; time to number of
V,W e in the last reduce the| iterations
iteration system [s]
RA R3232 1 27(74.281, 25005, 43559, 588 761) 173,70 2
GA || R332 | 27(74.28, 25005, 43559, 588 761) 159,96 2
AGA || R3282 | 27(74.28, 25005, 43559, 588 761) 174,26 2
methods for systems with proportional damping
expansion points; time to number of
V,W e in the last reduce the| iterations
iteration system [s]
RAPD || C3%32 | 27(74.28, 25005, 43559, 588 761) 421,10 2
GA_PD || ©3232 | 22(74.28, 25005, 43559, 588 76:) 396,52 2
AGA_PD || €3232 | 27(74.28, 25005, 43559, 588 761) 440,72 2

Table 1: Information about the results obtained with théowesr Krylov subspace methods.

e The relative error of the transfer function at frequerfcfrom the k-th input to thel-th output of a reduced
system was computed by

IHii () = Hi ()
[Hii ()l

Heregel(f) is the relative errory andlfikJ are the transfer functions from theth input to thel-th output of
the original resp. of the reduced system.

gel(f) =

e The absolute time response error at titnom the k-th input to thel-th output of a reduced system was
computed by

€abs(t) = Iyki(t) = S ().

Hereeapd(t) is the absolute erroyy andyi, are the time responses from tki¢h input to thel-th output of the
original resp. of the reduced system.

4.1. Approximation of the transfer function

In Figure 2 the transfer function and the time response of @le’s relative motion (5'th output) against the motor
torque (1'st input) and in Figure 3 the relative approximatrrorsee () of the reduced systems are displayed. The
relevant frequency interval is from 0 to 750 Hz because teigifency range is most important to simulate the behavior
of mechanical structures. The results of the proposed rdstfow the system reduced without damping maiare
displayed on the left in each of the figures, while the reduoltthe system reduced with proportional damping matrix
are given on the right hand side. Besides the relative esrah€ diferent Krylov subspace reduced models all figures
also include the relative error for the second-order moeldliced system (modab) of dimension 32.

transfer function time response

1072
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107 B . 4

—0.01

"
o
B

—0.02

magnitude [dB]

n
o
®

relative displacement [m]

-0.03 |

107t
-0.04 |

102 -0.05
o 100 200 300 500 600 700 o 0.1 0.2 0.3 0.4 0.5

o R
frequency [Hz] time [s]

Figure 2: Transfer function and time response from the fjstii to the 5'th output of the original system.
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Methods to reduce systems with no damping

~_- 1 1

Methods to reduce systems with proportional damping

~_-

modal_2o0

Expansion

Expansion <~ ~
P A © points

points

Erel(f)
Erel(f)

i i i i i i i i i i i i i i
(o] 100 200 300 400 500 600 700 (o] 100 200 300 400 500 600 700
frequency [Hz] frequency [Hz]

Figure 3: Relative errogre(f).

Clearly, all Krylov subspace reduced systems approxintaeoriginal system more accurate than the modal
reduced system in the frequency interval considered heltanéthods achieve reduced systems with lower approx-
imation errors than the modal reduced system of the same. oddeexpected all reduced systems approximate the
original transfer function up to a frequency of 358 Hz andheigvery accurately.

All Krylov subspace reduced systems obtained by reductfan system without damping matrix have an error
smaller than 5 107° for frequencies up to 600 Hz. For higher frequencies ther émaveases. The maximum errors
of the global Arnoldi methods GA and AGA (19) are slightly higher than of the block Arnoldi method RA (£p

All Krylov subspace reduced systems obtained by reducti@system with proportional damping matrix have a
maximal error of 10° for frequencies up to 600 Hz. Here the maximum errors of tbekArnoldi method RAPD
(107°) are slightly higher than that of the global Arnoldi meth@# and AGA (51077). In the whole frequency range
considered here the approximation errors of this systemseny similar or smaller than those of systems achieved
by the methods without damping matrix.

4.2. Approximation of the time response

To analyze the approximation abilities of the responseiehan time domain an input signalt) = 1000 sin(4xt)
was used as torque on the motor shaft. In Figure 4 the absappt@ximation errorg,,s(t) from the 1'st input to the
5'th output of the reduced systems are displayed. The netdirae interval is from 0 to 0,5 sec. In the entire time

Methods to reduce systems with no damping Methods to reduce systems with proportional damping

Eahsm
Eahsm

modal_2o
¢ RA ¢
10 : - - - GA E 10 : - - — GA_PD

- = AGA - = AGA_PD

modal_2o

RA_PD

i i i i i i i i
(o] 0.1 0.2 0.3 0.4 0.5 (o] 0.1 0.2 0.3 0.4 0.5
time [s] time [s]

Figure 4: Absolute errogspg(t) of the reduced systems.

interval considered here all reduced systems approxirhatéirne response of the original system very accurately
with maximal absolute error smaller thanT0“. The errors of all Krylov subspace reduced systems and the &fr
the modal reduced system are nearly the same.
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5. Conclusions

In this paper we propose a novel multi point adaptive methmhining the Adaptive Order Rational Global
Arnoldi (AORGA) algorithm and a modified Iterative Ratiorkalylov Algorithm (IRKA) for application in model or-
der reduction of second-order systems. Starting from drarkiinitial set of expansion points the method determines
the expansion points iteratively and the expansions paresipn point adaptively. Numerical experiments show good
approximation results of the time response and the trafighetion, especially for low frequencies. This frequency
range is most important to simulate the behavior of meclkssituctures. Further investigations by adoption this
method to the global Lanczos algorithm and for Krylov sulegisaof second kind are still in work.
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