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Abstract

In this paper we consider the reduction of second-order dynamical systems with multiple inputs and multiple outputs
(MIMO) arising in the numerical simulation of mechanical structures. In commercial software for the kind of applica-
tion considered here, modal reduction is commonly used to obtain a reduced system with good approximation abilities
of the original transfer function in the lower frequency range. In recent years new methods to reduce dynamical sys-
tems based on (block) versions of Krylov subspace methods emerged. This work concentrates on the reduction of
second-order MIMO systems by the global Arnoldi method, an efficient extension of the standard Arnoldi algorithm
for MIMO systems. In particular, a new model reduction algorithm for second order MIMO systems is proposed
which automatically generates a reduced system of given order approximating the transfer function in the lower range
of frequencies. It is based on the global Arnoldi method, determines the expansion points iteratively and the number
of moments matched per expansion point adaptively. Numerical examples comparing our results to modal reduction
and reduction via the block version of the rational Arnoldi method are presented.
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1. Introduction

In the context of the numerical simulation of machine tools second-order dynamical systems of the form

Mẍ(t) + Dẋ(t) + Kx(t) = Fu(t), y(t) = Cvẋ(t) +Cpx(t) (1)

arise, whereM,K,D ∈ R
n×n, F ∈ R

n×m, Cv,Cp ∈ R
q×n, x(t) ∈ R

n, u(t) ∈ R
m, y(t) ∈ R

q.
The system matrices considered are large, sparse, and non-symmetric. The matrixK is non-singular. The mass

matrix M may be singular. In that case one obtains a system of differential algebraic equations. In general,m andq
will be larger than one, so that the system is multi-input multi-output (MIMO). All of this accounts for unacceptable
computational and resource demands in simulation and control of these models. In order to reduce these demands
to acceptable computational times, usually model order reduction techniques are employed which generate a reduced
order model that captures the essential dynamics of the system and preserves its important properties. That is, one
tries to find a second order system of reduced dimensionr ≪ n

M̂ ¨̂x(t) + D̂ ˙̂x(t) + K̂ x̂(t) = F̂u(t), ŷ(t) = Ĉv ˙̂x(t) + Ĉpx̂(t), (2)

which approximates the original system in some sense, whereM̂, D̂, K̂ ∈ R
r×r , F̂ ∈ R

r×m, Ĉv, Ĉp ∈ R
q×r , x̂(t) ∈ R

r ,
u(t) ∈ R

m, ŷ(t) ∈ R
q.
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In the last years various methods to reduce second-order dynamical systems have been proposed, see, e.g., [1, 2, 3].
As model reduction of linear first-order systems is much further developed and understood, it is tempting to transform
the original second-order system (1) to a mathematically equivalent first-order system
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whereE,A ∈ R
2n×2n, B ∈ R

2n×m, C ∈ R
q×2n, z(t) ∈ R

2n, u(t) ∈ R
m, y(t) ∈ R

q. Various other linearizations have been
proposed in the literature, see, e.g., [4, 5, 6]. The linearization (3) is usually preferred as it is symmetry preserving
in caseK,M,D are symmetric. The system considered here is non-symmetric, so one of the various other possible
linearizations could be used instead. Note that the transformation process doubles the dimension of the system. The
corresponding reduced system is of the form

Ê˙̂z(t) = Âẑ(t) + B̂u(t) ŷ(t) = Ĉẑ(t), (4)

whereÊ, Â ∈ R
r×r , B̂ ∈ R

r×m, Ĉ ∈ R
q×r , ẑ(t) ∈ R

r , u(t) ∈ R
m, ŷ(t) ∈ R

q.
In the engineering context of our application modal reduction [7] is most common. Here we will consider pro-

jection based model reduction based on Krylov subspace methods. In the recent years various new Krylov subspace
based methods to reduce first- and second-order systems havebeen proposed, see, e.g., [8, 9, 10] and the references
therein. We will consider methods which generate matricesV ∈ R

2n×r with VTV = Ir such that the reduced first-order
system (4) is constructed by applying the Galerkin projectionΠ = VVT to (3)

Ê = VT EV, Â = VT AV, B̂ = VT B, and Ĉ = CV. (5)

Similarly, the reduced second-order system (2) is constructed by applying a Galerkin projection to (1) such that

M̂ = VT MV, D̂ = VTDV, K̂ = VT KV, F̂ = VT F, Ĉp = CpV and Ĉv = CvV, (6)

whereV ∈ R
n×r with VTV = Ir . The matrixV can be constructed iteratively by employing Krylov subspace al-

gorithms, in particular the block Arnoldi algorithm. It is well-known that Krylov subspace based methods are not
guaranteed to yield reduced order models with the best overall performance in the entire frequency domain; only local
approximation around the expansion point can be expected. Therefore, multi point moment matching methods have
been introduced [11, 12, 13], see Section 2 for a short review. In [14] the choice of expansion points is discussed,
in [15] an algorithm choosing the expansion points iteratively, called Iterative Rational Krylov Algorithm (IRKA)
and in [16, 17] adaptive multi point moment matching methodshave been proposed. The global Arnoldi method
[18] is similar to the standard Arnoldi method except that the standard inner product is replaced by the inner product
〈Y,Z〉F = trace(YTZ) whereY,Z ∈ R

n×s. The associated norm is the Frobenius norm|| · ||F . The global Arnoldi
algorithm constructs anF-orthonormal basisV1,V2, . . . ,Vk of the Krylov subspaceKk(Ψ,Υ),Ψ ∈ R

n×n,Υ ∈ R
n×s.

Here a system of vectors (matrices inR
n×s) is said to beF-orthonormal if it is orthonormal with respect to〈·, ·〉F .

The global Arnoldi algorithm is computational cheaper thanthe block Arnoldi method. It has been used for model
reduction of first-order systems (3), see [19, 20, 21, 22]. InSection 3 a short introduction of the global Arnoldi method
is presented. Further its extension to model reduction of second order MIMO systems is discussed. In the context of
the global Arnoldi algorithm, an adaptive-order global Arnoldi algorithm has been proposed [19, 17]. This algorithm
adaptively determines the number of expansions for a fixed set of expansion points. Here we propose a combination
of this algorithm and a modified version of IRKA [13] to reducesecond-order MIMO systems. The algorithm is based
on the global Arnoldi method, determines the expansion points iteratively and the number of moments matched per
expansion point adaptively. Numerical experiments are given in Section 4.

2. Model reduction using block Arnoldi type methods

A k-th order Krylov subspace is defined by

Kk(P, q) = span{q,Pq,P2q, · · · ,Pk−1q}, (7)
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whereP ∈ R
n×n and q ∈ R

n. The Arnoldi method [23, 24] applied to the pair (P, q) produces a matrixV with
orthonormal columns which span the Krylov subspaceKk(P, q) (in case no breakdown occurs during the computation).

In order to be able to treat MIMO systems, we will need to consider block Krylov subspaces

Kk(P,Q) = span{Q,PQ,P2Q, · · · ,Pk−1Q}, (8)

whereP ∈ R
n×n and the columns ofQ ∈ R

n×ℓ are linearly independent. Such a block Krylov subspace withℓ starting
vectors (assembled inQ) can be considered as a union ofℓ Krylov subspaces defined for each starting vector. Usually,
the computation of an orthonormal basisV[k] ∈ R

n×k·ℓ with k · ℓ = r is achieved by employing a block Arnoldi
algorithm, see Algorithm 1 [25].

Algorithm 1 Block Arnoldi method
Input: matrices P,Q
Output: transformation matrixV

1: function [V] = Block Arnoldi(P,Q)
2: compute theQRfactorizationV1R= Q
3: V = [V1]
4: for j = 1, 2, ..., k do
5: W = AVj

6: for i = 1, . . . , j do
7: Hi j = VT

i W
8: W =W− ViHi j

9: end for
10: compute theQRfactorizationV j+1H j+1, j =W
11: V = [V Vj+1]
12: end for

The columns ofV[k] = [V1,V2, . . . ,Vk] with V j ∈ R
n×ℓ are an orthogonal basis for the block Krylov subspace

Kk(P,Q) provided none of the upper triangular matricesH j+1, j in Algorithm 1 are rank-deficient. As in the standard
Arnoldi algorithm re-orthogonalization is necessary in order to keep the computed columns ofV orthogonal. The
following relation will hold

AV[k] = V[k]H[k] + [0, . . . , 0,Vk+1Hk+1,k]

whereH[k] is a block upper Hessenberg matrix.

2.1. First order systems

The transfer function of a first-order system (3) is the linear mapping of the Laplace transformation of the input to
the output

H(s) = C(sE− A)−1B.

After expansion in a Laurent expansion series around an expansion points0 one obtains the momentsh j(s0), j =
0, ..,∞ of the transfer function

H(s) =

∞∑

j=0

h j(s0)(s− s0) j,

where h j(s0) = C[(A− s0E)−1E] j(A− s0E)−1B.

Consider the block Krylov subspaceKk(P,Q) (8) for

P = (A− s0E)−1E ∈ R
2n×2n and Q = (A− s0E)−1B ∈ R

2n×m.

Assume that an orthogonal basis for this block Krylov subspace is generated using the block Arnoldi method. Here,
and in the rest of the paper, we will assume that no breakdown occurred during the computations so that the column-
space of the resulting matrixV spans the block Krylov subspaceKk(P,Q). Applying the similarity transformation (5)
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(with V = V[k] ∈ R
2n×r , VTV = Ir andr = k ·m) yields a reduced system whose transfer function matches atleast the

first k moments of the transfer function of the original system [8].That is, at least the firstk momentŝh j(s0), of the
transfer functionĤ(s) of the reduced system (4) equal the first momentsh j(s0), of the transfer functionH(s) of the
original system (3) at expansion points0

h j(s0) = ĥ j(s0), j = 0, 1, · · · , k− 1.

An alternative is to use more than one expansion point, this leads to multi point moment matching methods called
Rational Krylov methods [12]. Assume thatî expansion pointssi , i = 1, 2, · · · , î are considered. The column vectors
of the matrixV are determined from thêi block Krylov subspaces generated by

P = (A− si E)−1E and Q = (A− si E)−1B, i = 1, 2, . . . , î. (9)

From each of these subspaces,r i = ki ·m column vectors are used to generateV ∈ R
2n×r (with r =

∑î
i=1 r i). Then at

leastki moments are matched per expansion pointsi ,

h j(si) = ĥ j(si), j = 0, 1, · · · , ki − 1, i = 1, 2, · · · , î, (10)

if the reduced system is generated by (5).
In [13] the choice of expansion pointssi , i = 1, . . . , î is discussed. Starting from an initial set of expansion points

a reduced order system is determined. Then a new set of expansion points is chosen assi = −λi , i = 1, . . . , î where
λi are the eigenvalues of the matrix pencilÊ − λÂ with Ê, Â as in (4), ordered such that|λ1| ≥ |λ2| ≥ . . . ≥ |λr |.
This algorithm is called Iterative Rational Krylov Algorithm (IRKA) [13]. Here a modified version of IRKA is
proposed: A new set of expansion points is chosen from the setof eigenvalues ordered by their imaginary part such
that |Im(λ1)| ≤ |Im(λ2)| ≤ . . . ≤ |Im(λr )|. Starting froms1 = Im(λ1) · ı (ı =

√
−1) the next expansion points

si , i = 2, . . . , î are chosen assi = Im(λi) · ı. As expansion points lying a bit apart yield better approximation results,
this choice of the expansion points is refined such that in addition we require|si−1 − si | > ǫ, whereǫ is chosen by the
user and defines a (minimum) distance between two adjacent expansion points. Hence, if|s2 − s1| ≤ ǫ, we do not
chooses2 = Im(λ2) · ı, but test|s2 − s1| for s2 = Im(λ3) · ı. If this is still small thanǫ, we next test fors2 = Im(λ4) · ı,
until we have found anλk such thats2 = Im(λk) · ı yields |s2 − s1| > ǫ. Next we chooses3 is the same fashion
starting fromλk+1 such that|s3 − s2| > ǫ. Unlike IRKA, this method cannot be guaranteed to beH2-optimal but after
a few iterations good approximation results of the transferfunction, especially for low frequencies, are obtained. The
approach described here is summarized as the Modified Iterative Rational Arnoldi algorithm (MIRA) in Algorithm 2.

In [17] a strategy for an adaptive-order model reduction method based on the Arnoldi method is discussed. Given
a fixed set of expansion pointssi , i = 1, . . . , î and the reduced dimensionr, an adaptive scheme for automatically
choosingr i about each expansion pointsi is proposed, see Chapter 3.2.

2.2. Second order systems

The transfer function of a second-order system is given by the Laplace transformation of (1):

H(s) = (Cp + sCv)(s2M + sD+ K)−1F.

After expansion in a Laurent expansion series around an expansion points0 one obtains the momentsh j(s0), j =
0, ..,∞ of the transfer function

H(s) =
∞∑

j=0

h j(s0)(s− s0) j ,

where
h j(s0) = (C̃p + s0Cv)[(−s2

0M − s0D̃ − K̃)−1M] j(−s2
0M − s0D̃ − K̃)−1F

with D̃ = 2s0M + D, K̃ = s2
0M + s0D + K andC̃p = Cp + s0Cv. (In an abuse of notation, we denote the transfer

function (the moments) of the first- and the second-order system byH (h j). It will be clear from the context which
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Algorithm 2 Modified Iterative Rational Arnoldi (MIRA)

Input: system matrices, initial expansion pointssi , i = 1, . . . , î,
r i = m · ki , tolerancetol, ǫ

Output: reduced system of orderr = mî k̂
1: setsold

i so that maxi∈{ 1,2,...̂i } |sold
i − si | > tol

2: while maxi∈{ 1,2,...̂i } |sold
i − si | > tol do

3: V = [ ]
4: for k = 1, 2, . . . , k̂ do
5: for i = 1, 2, . . . , î do
6: computeVi using the block Arnoldi method forP and Q as in (9) resp. as in (11) (modified so that

re-orthogonalizing against the entire matrixV is used)
7: V = [V Vi ]
8: end for
9: end for

10: compute reduced system matrices withV by (5) resp. (6)
11: compute the eigenvaluesλ j , j = 1 . . . , r of the reduced system ordered such that|Im(λ1)| ≤ |Im(λ2)| ≤ . . . ≤

|Im(λr )|
12: sold

i ← si , for i = 1, . . . , î
13: choose new expansion pointssi as explained at the end of Section 2.1
14: end while
15: compute the congruence transformation withV by (5) resp. (6).

one is refered to.) Here we consider only the special cases ofsystems with no or proportional damping matrix. The
block Krylov subspaceKk(P,Q) with

P = −(s2
0M + s0D + K)−1M and Q = −(s2

0M + s0D + K)−1F

is used to generate the transformation matrixV. In [1] it was shown, that the transfer function of the systemreduced
by applying the congruence transformation (6) withV matches at least the firstk moments of the transfer function of
the original system.

If more than one expansion point is used, ther =
∑î

i=1 r i , r i = ki ·m column vectors of matrixV are determined
from the block Krylov subspaces generated by

P = −(s2
i M + si D + K)−1M and Q = −(s2

i M + si D + K)−1F. (11)

The transfer function of the system reduced by applying the congruence transformation (6) withV matches at least the
first ki moments of the transfer function of the original system per expansion pointsi [1]. As in the case of first-order
systems, the iterative approach MIRA for the choice of the expansion pointssi can be used. The pseudo-code of
MIRA is given as Algorithm 2.

3. Model Reduction using the Global Arnoldi Method

The global Krylov method was first proposed in [26, 18] for solving linear equations with multiple right hand sides
and Lyapunov equations. Applications to model order reductions of first-order systems are studied in [19, 20, 21, 22].
It was also used for solving large Lyapunov matrix equations[27]. The global Krylov method is similar to the standard
Krylov method except that the standard inner product is replaced by the inner product〈Y,Z〉F = trace(YTZ),Y,Z ∈
R

n×s. The associated norm is the Frobenius norm|| · ||F . A system of vectors (matrices) inRn×s is said to beF-
orthonormal if it is orthonormal with respect to〈·, ·〉F .

The global Arnoldi algorithm [18] (see Algorithm 3) constructs anF-orthonormal basisV1,V2, . . . ,Vk with V j ∈
R

n×s of the Krylov subspaceKk(Ψ,Υ),Ψ ∈ R
n×n,Υ ∈ R

n×s; i.e.,

〈Vi ,V j〉F = 0 i , j, i, j = 1, . . . , k,

〈V j ,V j〉F = 1.
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Algorithm 3 Global Arnoldi method
Input: matricesΨ,Υ
Output: transformation matrixV

1: function [V] = Global Arnoldi(Ψ,Υ)
2: V1 = Υ/||Υ||F
3: V = [V1]
4: for j = 1, 2, ..., k do
5: W = ΨV j

6: for i = 1, 2, ..., j do
7: hi j = 〈Vi ,W〉F
8: W =W− hi j Vi

9: end for
10: h j+1, j = ||W||F
11: V j+1 =W/h j+1, j

12: V = [V Vj+1]
13: end for

In terms of computational time, the global Arnoldi method isfaster than the block Arnoldi method. Comparing
both algorithms, the block Arnoldi method requires aQR decomposition ofW in every step (line 2 and 10), while
the global Arnoldi method only needs the division by the Frobenius norm ofW. Moreover, the block Arnoldi method
requires the computation ofVTW in line 7, while the global Arnoldi method only needs the trace of that matrix.
Finally, in line 8 of the algorithm, the block Arnoldi methodrequires a matrix-matrix-product, while the global
Arnoldi method only needs a scalar-matrix-product.

If s= 1, the global Arnoldi algorithm reduces to the standard Arnoldi algorithm. LetV(k) = [V1 V2 . . .Vk] ∈ R
n×r ,

r = k · sandHk the correspondingk× k upper Hessenberg matrix. The following relation will hold

ΨV(k) = V(k)(Hk ⊗ Is) + hk+1,k[0, . . . , 0,Vk+1].

Here⊗ denotes the Kronecker product of two matricesX ∈ R
u×u andY ∈ R

v×v

X ⊗ Y =





x11Y x12Y · · · x1uY
x21Y x22Y · · · x2uY
...

...
...

...

xu1Y xu2Y · · · xuuY





= [xi j Y]u
i, j=1 ∈ R

uv×uv.

Note that the Hessenberg matrixHk in the global Arnoldi algorithm is of dimensionk × k while for the block
Arnoldi algorithm H[k] is a block Hessenberg matrix of dimensionℓ k × ℓ k. Moreover, as noted in [18], linear
dependence between the column vectors of the generated matricesVi , i = 1, . . . , k has no effect on the global Arnoldi
algorithm. The major difference between the global and the block Arnoldi algorithm lies in the computed basis
of the Krylov subspace: the global Arnoldi algorithm allowsto generate theF-orthonormal basis, while the block
Arnoldi algorithm constructs an orthogonal basis. The matrices constructed by the block Arnoldi algorithm have their
columns mutually orthogonal. Finally, note that the block Arnoldi algorithm constructs an orthonormal basis of the
block Krylov subspaceKk(Ψ,Υ) ⊂ R

n while the global Arnoldi algorithm generates anF-orthonormal basis of the
matrix Krylov subspaceKk(Ψ,Υ) ⊂ R

n×s.

If the global Arnoldi method and the block Arnoldi method areapplied to the same matrix pair (Ψ,Υ), the resulting
matricesV(k) andV[k] both span the same Krylov subspaceKk(Ψ,Υ). The orthonormalization of the bases vectors of
Kk(Ψ,Υ) is the only difference whether constructed by the the block- or the global-Arnoldi method. In [12, Chapter
3] it is shown that the moment matching property (10) does only depend on the fact that the columns ofV = V[k] resp.
V = V(k) span the Krylov subspaceKk(P,Q) with (P,Q) as in (9) resp. in (11). It does not depend on the wayV is
computed or whether its columns have a certain additional property. Hence, the moment matching property holds for
reduction methods based on the global Arnoldi algorithm as well as for reduction methods based on the block Arnoldi
algorithm.
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3.1. First order systems

The global Arnoldi method is the standard Arnoldi method applied to the matrix pair ((I ⊗ P j), vec (Q)) = (Ψ,Υ),
where the inner product is replaced by〈X,Y〉F = vec (X)Tvec (Y) = trace(XTY). Here vec (·) denotes the usual vector
stacking operation [28]

vec (Z) = (Z∗1 Z∗2 · · · Z∗v)T ∈ R
uv, Z = [Z∗1 Z∗2 · · · Z∗v] ∈ R

u×v, Z∗ j ∈ R
u, j = 1, . . . , v.

For vec (P j ,Q) we have
vec (P j ,Q) = (I ⊗ P j) vec (Q).

Therefore, withP andQ as in (9), the moments of the system (3) can be associated witha vector-function.
Assume that anF-orthogonal basis for the Krylov subspaceKk(P,Q) for (P,Q) as in (9) is generated using the

global Arnoldi method. Applying the projectionΠ = V(k)V
†
(k) to (3) leads to the reduced system with

Ê = V†(k)EV(k), Â = V†(k)AV(k), B̂ = V†(k)B, and Ĉ = CV(k). (12)

As V(k) is F-orthonormal, the pseudo-inverseV†(k) = (VT
(k)V(k))−1VT

(k) has to be used instead ofVT
(k).

If the global Arnoldi method and the block Arnoldi method areapplied to the matrix pair (P,Q) as in (9), the
moment matching property (10) discussed for the block Arnoldi based model reduction is still valid. The first moments
ĥ j(s0), of the transfer function of the reduced system (4) are the same as those of the original system (3). The Iterative
Rational Arnoldi algorithm as in Algorithm 2 is easily modified to make use of the global Arnoldi method instead
of the block Arnoldi algorithm. Besides the change of the algorithm to be used in line 6 of Algorithm 2 the reduced
systems have to be determined using (12) (resp. (13)). The resulting algorithm is called Iterative Rational Global
Arnoldi algorithm (IRGA).

3.2. Second order systems

Assume that anF-orthogonal basisV(k) for the Krylov subspaceKk(P,Q) for (P,Q) as in (11) is generated using
the global Arnoldi method. The reduced system is then given by applying the projectionΠ = V(k)V

†
(k) to (1) such that

M̂ = V†(k)MV(k), D̂ = V†(k)DV(k), K̂ = V†(k)KV(k),

F̂ = V†(k)F, Ĉp = CpV(k), and Ĉv = CvV(k).
(13)

If the global Arnoldi method and the block Arnoldi method areapplied to the matrix pair (P,Q) as in (11) the
moment matching property discussed for the block Arnoldi based model reduction is here still valid. The first moments
ĥ j(s0), of the transfer function of the reduced system (13) are thesame as those of the original system (1).

In the previous section, ther i were chosen asm · ki so that for each expansion point at leastki moments are
matched. Here a different approach suggested in [19, 29] is used which adaptively determines ther i . The Adaptive
Order Rational Global Arnoldi (AORGA) algorithm describesan adaptive scheme for automatically choosingr i about
each expansion pointsi given a fixed set of expansion pointssi , i = 1, . . . î and the reduced dimensionr. In the j-th
iteration of AORGA an expansion point from the set of fixed expansion points corresponding to the maximum output
moment error will be chosen to computeV j . Consequently, the corresponding reduced system will yield the greatest
output moment improvement among all reduced systems of the same order and the same set of expansion points.

In [17] the exactj-th moment error of reduced first-order systems at an expansion pointsi has been determined
analytically

||h j(si) − ĥ j(si)||F = ||hπ(si) C R( j−1)(si)||F , (14)

whereh j(si) andĥ j(si) are thej-th moments of the original resp. the reduced first-order system,hπ(si) =
j−1∏

k=1
||R(k)(si)||F,

andRk(si) is the residual at expansion pointsi defined by

Rk(si) = (si E − A)−1B, for k = 1, and Rk(si) = (si E − A)−1EVk−1, for k = 2, . . . , j − 1.
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In the j-th iteration of AORGA expression (14) is used to determine the expansion pointσ j corresponding to the
maximum moment error by

σ j = max
si

||hπ(si) C R( j−1)(si)||F .

For more details of the algorithm see [19].
Here an algorithm to reduce second-order systems combiningthis approach and IRGA is proposed. This algo-

rithm, called Adaptive Iterative Rational Global Arnoldi algorithm (AIRGA), computes a reduced system by deter-
mining the expansion points iteratively and the number of matched moments per expansion point adaptively. The
method is given in pseudo-code as Algorithm 4. Modifying (14) by changing the first-order system output matrixC
to (Cp + siCv), whereCv andCp are the second-order system output matrices, andRk(si) to

Rk(si) = −(s2
i M + siD + K)−1F, for k = 1, and Rk(si) = −(s2

i M + siD + K)−1MVk−1, for k = 2, . . . , j − 1,

the error of thej-th moment̂h j(si) at expansion pointsi , i = 1, . . . , î of the second-order system is given by

||h j(si) − ĥ j(si)||F = ||hπ(si)(Cp + siCv)R( j−1)(si)||F ,

whereh j(si) and ĥ j(si) are the j-th moments of the original resp. of the reduced second-order system. In thej-th
iteration of Algorithm 4 (line 12) this approach is used to determine the expansion pointσ j corresponding to the
maximum j-th moment error of the reduced second-order system by

σ j = max
si

||hπ(si) (Cp + siCv) R( j−1)(si)||F .

4. Numerical Results

Our test model is a simplified, abstract mechanical structure of a machine tool modeled using the FEM environ-
ment MSC.PATRAN/MSC.NASTRANc© (see Figure 1, here TCP denotes the tool center point). The test model is of

Figure 1: FE model of a simplified, abstract mechanical structure.

ordern = 51.816, it has four inputs (m= 4) and eight outputs (q = 8). The damping matrixD was chosen as Rayleigh
damping

D = α · M + β · K,
i.e. D is proportional to the mass matrixM and the stiffness matrixK. The parameters for the proportional damping
matrix were chosen asα = 0.02 andβ = α/1500.
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Algorithm 4 Adaptive Iterative Rational Global Arnoldi (AIRGA)

Input: matricesM,D,K, F,Cp,Cv, number of columns of matrixF m, initial expansion pointssi , i = 1, . . . , î, reduced
dimensionr, tolerancetol, ǫ

Output: reduced matriceŝM, D̂, K̂, F̂, Ĉp, Ĉv, number of expansionsr i , i = 1, . . . , î, sequence of used expansion
pointsσ j , j = 1, . . . , ⌈r/m⌉

1: setsold
i so that maxi∈{ 1,2,...̂i } |sold

i − si | > tol
2: J := ⌈r/m⌉
3: while maxi∈{ 1,2,...̂i } |sold

i − si | > tol do
4: V = [ ]
5: for eachsi do
6: R(0)(si) := −(s2

i M + si D + K)−1F
7: hπ(si) := 1
8: end for
9: /* compute transformation matrix */

10: for j = 1, 2, . . . , J do
11: /* Select the expansion point with maximum output moment error * /
12: Choosesi with maxsi ||hπ(si)(Cp + siCv)R( j−1)(si)||F
13: Letσ j = si be the expansion point in thej-th iteration
14: /* Generatem newF-orthonormal vectors atσ j * /
15: h j, j−1(σ j) := ||R( j−1)(σ j)||F
16: V j := R( j−1)(σ j)/h j, j−1(σ j)
17: hπ(σ j) := hπ(σ j) · h j, j−1(σ j)
18: /* UpdateR( j)(si) for the next iteration */
19: for i = 1, . . . , î do
20: if (si == σ j) then
21: R( j)(si) := −(s2

i M + si D + K)−1MV j

22: else
23: R( j)(si) := R( j−1)(si)
24: end if
25: for t = 1, 2, . . . , j do
26: ht, j(si) := trace(VtR( j)(si))
27: R( j)(si) := R( j)(si) − ht, j(si)Vt

28: end for
29: end for
30: end for
31: V = [V1V2 · · ·VJ]
32: V = V(: , 1 : r)
33: /* transform matrices M, D and K */
34: computeM̂ = V†MV, D̂ = V†DV andK̂ = V†KV as in (13)
35: /* determine a new set of expansion points */
36: compute the eigenvaluesλ j , j = 1 . . . , r of the reduced system ordered such that|Im(λ1)| ≤ |Im(λ2)| ≤ . . . ≤

|Im(λr )|
37: sold

i ← si , for i = 1, . . . , î
38: choose new expansion pointssi as explained at the end of Section 2.1
39: end while
40: /* Yield reduced system matrices by congruence transformation */
41: computeM̂, D̂, K̂, F̂, Ĉp, Ĉv as in (13).

The algorithms were implemented in MATLAB1 version 7.1 (R14) and the computations were performed on a

1MATLAB is a trademark of The MathWorks, Inc.
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AMD Athlon(tm) 64 X2 Dual Core Processor 4400+ and 2 GB RAM. The second-order system was reduced by the
following methods:

1. MIRA for systems without damping matrix which generates aGalerkin projection (6) fromP andQ as in (11)
by the block Arnoldi method (RA).

2. IRGA for systems without damping matrix which generates aprojection (13) fromP andQ as in (11) by the
global Arnoldi method (GA).

3. AIRGA for systems without damping matrix which generatesa projection (13) fromP andQ as in (11) by the
adaptive global Arnoldi method (AGA).

4. MIRA for systems with proportional damping which generates a Galerkin projection (6) fromP andQ as in
(11) by the block Arnoldi method (RAPD).

5. IRGA for systems with proportional damping which generates a projection (13) fromP andQ as in (11) by the
global Arnoldi method (GAPD).

6. AIRGA for systems with proportional damping which generates a projection (13) fromP andQ as in (11) by
the adaptive global Arnoldi method (AGAPD).

The first three methods are modified versions of the Rational-Arnoldi method for first-order systems. They reduce
second-order systems without damping matrix [12, 30]. Thatis, they assumeD = 0 in (11) and compute a reduced
system (2) withD̃ = 0. A damped reduced system is obtained by adding the proportional damping matrixD̂ =
αM̂ + βK̂. The last three methods exploit the special structure of theproportional damping matrix [1]. In case
complex valued expansion points are used, the last three of the above algorithms generate complex valued matrices
V. The algorithms RA, GA and AGA generate real matrices even incase of complex valued expansion points.

Once a complex expansion point is used, in the algorithms to reduce systems with proportional damping matrix, all
further computations involve complex arithmetic. As the reduced systems are commonly used for further simulation
in NASTRAN or SIMULINK which requires real systems, the following considerations had to be taken into account.
Before computing the congruence transformation the transformation matrixV has to be transformed back to a real
matrix. This can be done, e.g., as follows

[V,R] = qr( [Re(V(:, 1 : ⌈r/2⌉)) Im(V(:, 1 : ⌊r/2⌋))] ). (15)

In our implementation a rank-revealingQR decomposition was used to compute (15). By this process the number
of columns ofV doubles. Therefore, in setting up the real transformation matrices only the firstr/2 columns ofV
were used, so that the resulting system is of the desired order r. Note that this process halves the number of matched
moments.

The methods were started with the four initial expansion points 2πı, 500πı, 1000πı and 1500πı. To match at least
the first two moments (methods RA, GA and AGA) resp. at least the first moment (methods RAPD, GA PD and
AGA PD) of the original systems in our computations, the reduction methods where used witĥki = 2, î = 4, tol = 0.1
andǫ = 750. With these parameters the reduced dimension wasr = ki · î ·m = 2 · 4 · 4 = 32. With the procedure to
choose the expansion pointssi as explained at the end of section 2.1 the last expansion point is located at frequencies
higher than̂i · ǫ/(2π) = 358 Hz. Hence, we expect a good approximation of the frequency range from 0 Hz to 358 Hz
at least. Besides the methods already mentioned, a second-order modal reduced system of dimension 32 (modal2o)
was generated by NASTRAN in order to compare the approximation results of the various reduction methods. In
Table 1 essential information about the results obtained with the various methods is summarized. The sequence of
expansion points adaptively determined in the last iteration by the method AGA wass1, s2, s1, s3, s4, s2, s3, s4 resp.
s1, s2, s3, s4, s1, s2, s3, s4 by the method AGAPD. The numerical results demonstrate the applicability ofthe proposed
methods based on the global Arnoldi method. The approximation of the transfer function and the time response by
reduced systems obtained with global Arnoldi methods are comparable to those obtained with block Arnoldi reduced
systems. All Krylov based reduced systems approximate the original system transfer function more accurate than the
modal reduced system of the same order.

In order to compare the different methods the approximation of the original transfer function and the time response
of the reduced systems were analyzed. To assess the quality of the reduced systems the following errors were used:
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methods for systems without damping matrix
expansion pointssi time to number of

V,W ∈ in the last reduce the iterations
iteration system [s]

RA R32×32 2π(74.28ı, 250.05ı, 435.59ı, 588, 76ı) 173,70 2
GA R32×32 2π(74.28ı, 250.05ı, 435.59ı, 588, 76ı) 159,96 2

AGA R32×32 2π(74.28ı, 250.05ı, 435.59ı, 588, 76ı) 174,26 2

methods for systems with proportional damping
expansion pointssi time to number of

V,W ∈ in the last reduce the iterations
iteration system [s]

RA PD C
32×32 2π(74.28ı, 250.05ı, 435.59ı, 588, 76ı) 421,10 2

GA PD C32×32 2π(74.28ı, 250.05ı, 435.59ı, 588, 76ı) 396,52 2
AGA PD C32×32 2π(74.28ı, 250.05ı, 435.59ı, 588, 76ı) 440,72 2

Table 1: Information about the results obtained with the various Krylov subspace methods.

• The relative error of the transfer function at frequencyf from thek-th input to thel-th output of a reduced
system was computed by

ǫrel( f ) =
|Hk,l( f ) − Ĥk,l( f )|
|Hk,l( f )| .

Hereǫrel( f ) is the relative error,Hk,l andĤk,l are the transfer functions from thek-th input to thel-th output of
the original resp. of the reduced system.

• The absolute time response error at timet from the k-th input to thel-th output of a reduced system was
computed by

ǫabs(t) = |yk,l(t) − ŷk,l(t)|.
Hereǫabs(t) is the absolute error,yk,l andŷk,l are the time responses from thek-th input to thel-th output of the
original resp. of the reduced system.

4.1. Approximation of the transfer function

In Figure 2 the transfer function and the time response of theTCP’s relative motion (5’th output) against the motor
torque (1’st input) and in Figure 3 the relative approximation errorsǫrel( f ) of the reduced systems are displayed. The
relevant frequency interval is from 0 to 750 Hz because this frequency range is most important to simulate the behavior
of mechanical structures. The results of the proposed methods for the system reduced without damping matrixD are
displayed on the left in each of the figures, while the resultsfor the system reduced with proportional damping matrix
are given on the right hand side. Besides the relative error for the different Krylov subspace reduced models all figures
also include the relative error for the second-order modal reduced system (modal2o) of dimension 32.
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Figure 2: Transfer function and time response from the 1’st input to the 5’th output of the original system.
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Figure 3: Relative errorǫrel( f ).

Clearly, all Krylov subspace reduced systems approximate the original system more accurate than the modal
reduced system in the frequency interval considered here. All methods achieve reduced systems with lower approx-
imation errors than the modal reduced system of the same order. As expected all reduced systems approximate the
original transfer function up to a frequency of 358 Hz and higher very accurately.

All Krylov subspace reduced systems obtained by reduction of a system without damping matrix have an error
smaller than 5· 10−9 for frequencies up to 600 Hz. For higher frequencies the error increases. The maximum errors
of the global Arnoldi methods GA and AGA (10−5) are slightly higher than of the block Arnoldi method RA (10−6).

All Krylov subspace reduced systems obtained by reduction of a system with proportional damping matrix have a
maximal error of 10−9 for frequencies up to 600 Hz. Here the maximum errors of the block Arnoldi method RAPD
(10−6) are slightly higher than that of the global Arnoldi methodsGA and AGA (5·10−7). In the whole frequency range
considered here the approximation errors of this systems are very similar or smaller than those of systems achieved
by the methods without damping matrix.

4.2. Approximation of the time response

To analyze the approximation abilities of the response behavior in time domain an input signalu(t) = 1000·sin(4πt)
was used as torque on the motor shaft. In Figure 4 the absoluteapproximation errorsǫabs(t) from the 1’st input to the
5’th output of the reduced systems are displayed. The relevant time interval is from 0 to 0,5 sec. In the entire time
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Figure 4: Absolute errorǫabs(t) of the reduced systems.

interval considered here all reduced systems approximate the time response of the original system very accurately
with maximal absolute error smaller than 2· 10−4. The errors of all Krylov subspace reduced systems and the error of
the modal reduced system are nearly the same.
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5. Conclusions

In this paper we propose a novel multi point adaptive method combining the Adaptive Order Rational Global
Arnoldi (AORGA) algorithm and a modified Iterative RationalKrylov Algorithm (IRKA) for application in model or-
der reduction of second-order systems. Starting from a arbitrary initial set of expansion points the method determines
the expansion points iteratively and the expansions per expansion point adaptively. Numerical experiments show good
approximation results of the time response and the transferfunction, especially for low frequencies. This frequency
range is most important to simulate the behavior of mechanical structures. Further investigations by adoption this
method to the global Lanczos algorithm and for Krylov subspaces of second kind are still in work.
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