13 research outputs found
Variations on RNA folding and alignment: lessons from Benasque
Dynamic Programming Algorithms solve many standard problems of RNA bioinformatics in polynomial time. In this contribution we discuss a series of variations on these standard methods that implement refined biophysical models, such as a restriction of RNA folding to canonical structures, and an extension of structural alignments to an explicit scoring of stacking propensities. Furthermore, we demonstrate that a local structural alignment can be employed for ncRNA gene finding. In this context we discuss scanning variants for folding and alignment algorithms
Evolutionary patterns of non-coding RNAs
A plethora of new functions of non-coding RNAs have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this \Modern RNA World' and its components. In this contribution we attempt to provide at least a cursory overview of the diversity of non-coding RNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of
Y RNA genes in vertebrates, studies of the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of microRNAs in metazoans, which suggests an explosive increase in the microRNA repertoire in vertebrates. The analysis of the transcription of non-coding RNAs (ncRNAs) suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA
RNAalifold: improved consensus structure prediction for RNA alignments
<p>Abstract</p> <p>Background</p> <p>The prediction of a consensus structure for a set of related RNAs is an important first step for subsequent analyses. RNAalifold, which computes the minimum energy structure that is simultaneously formed by a set of aligned sequences, is one of the oldest and most widely used tools for this task. In recent years, several alternative approaches have been advocated, pointing to several shortcomings of the original RNAalifold approach.</p> <p>Results</p> <p>We show that the accuracy of RNAalifold predictions can be improved substantially by introducing a different, more rational handling of alignment gaps, and by replacing the rather simplistic model of covariance scoring with more sophisticated RIBOSUM-like scoring matrices. These improvements are achieved without compromising the computational efficiency of the algorithm. We show here that the new version of RNAalifold not only outperforms the old one, but also several other tools recently developed, on different datasets.</p> <p>Conclusion</p> <p>The new version of RNAalifold not only can replace the old one for almost any application but it is also competitive with other approaches including those based on SCFGs, maximum expected accuracy, or hierarchical nearest neighbor classifiers.</p
Variations on RNA folding and alignment: lessons from Benasque
Dynamic Programming Algorithms solve many standard problems of RNA bioinformatics in polynomial time. In this contribution we discuss a series of variations on these standard methods that implement refined biophysical models, such as a restriction of RNA folding to canonical structures, and an extension of structural alignments to an explicit scoring of stacking propensities. Furthermore, we demonstrate that a local structural alignment can be employed for ncRNA gene finding. In this context we discuss scanning variants for folding and alignment algorithms
Variations on RNA folding and alignment: lessons from Benasque
Dynamic Programming Algorithms solve many standard problems of RNA bioinformatics in polynomial time. In this contribution we discuss a series of variations on these standard methods that implement refined biophysical models, such as a restriction of RNA folding to canonical structures, and an extension of structural alignments to an explicit scoring of stacking propensities. Furthermore, we demonstrate that a local structural alignment can be employed for ncRNA gene finding. In this context we discuss scanning variants for folding and alignment algorithms
Evolutionary patterns of non-coding RNAs
A plethora of new functions of non-coding RNAs have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this \Modern RNA World' and its components. In this contribution we attempt to provide at least a cursory overview of the diversity of non-coding RNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of
Y RNA genes in vertebrates, studies of the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of microRNAs in metazoans, which suggests an explosive increase in the microRNA repertoire in vertebrates. The analysis of the transcription of non-coding RNAs (ncRNAs) suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA
Evolutionary patterns of non-coding RNAs
A plethora of new functions of non-coding RNAs have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this \Modern RNA World' and its components. In this contribution we attempt to provide at least a cursory overview of the diversity of non-coding RNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of
Y RNA genes in vertebrates, studies of the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of microRNAs in metazoans, which suggests an explosive increase in the microRNA repertoire in vertebrates. The analysis of the transcription of non-coding RNAs (ncRNAs) suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA
Evolutionary Patterns of Non-Coding RNAs
A plethora of new functions of non-coding RNAs have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, an
RNAs Everywhere: Genome-Wide Annotation of Structured RNAs
Starting with the discovery of microRNAs and the advent of genome-wide transcriptomics, non-protein-coding transcripts have moved from a fringe topic to a central field research in molecular biology. In this contribution we review the state of the art of “computational RNomics”, i.e., the bioinformatics approaches to genomewide RNA annotation. Instead of rehashing results from recently published survey