1,777 research outputs found

    The impact of spatial fluctuations in the ultra-violet background on intergalactic carbon and silicon

    Get PDF
    Spatial inhomogeneities in the spectral shape of the ultra-violet background (UVB) at the tail-end of HeII reionisation are thought to be the primary cause of the large fluctuations observed in the HeII to HI Ly-a forest optical depth ratio, tau_HeII/tau_HI, at z~2-3. These spectral hardness fluctuations will also influence the ionisation balance of intergalactic metals; we extract realistic quasar absorption spectra from a large hydrodynamical simulation to examine their impact on intergalactic SiIV and CIV absorbers. Using a variety of toy UVB models, we find that while the predicted spatial inhomogeneities in spectral hardness have a significant impact on tau_HeII/tau_HI, the longer mean free path for photons with frequencies above and below the HeII ionisation edge means these fluctuations have less effect on the SiIV and CIV ionisation balance. Furthermore, UVB models which produce the largest fluctuations in specific intensity at the HeII ionisation edge also have the softest ionising spectra, and thus result in photo-ionisation rates which are too low to produce significant fluctuations in the observed tau_SiIV/tau_CIV. Instead, we find spatial variations in the IGM metallicity will dominate any scatter in tau_SiIV/tau_CIV. Our results suggest that observational evidence for homogeneity in the observed tau_SiIV/tau_CIV distribution does not rule out the possibility of significant fluctuations in the UVB spectral shape at z~2-3. On the other hand, the scatter in metallicity inferred from observations of intergalactic CIV and SiIV absorption at z~2-3 using spatially uniform ionisation corrections is likely intrinsic, and therefore provides a valuable constraint on intergalactic metal enrichment scenarios at these redshifts.Comment: 13 pages, 7 figures, accepted to MNRA

    The nature and evolution of the highly ionized near-zones in the absorption spectra of z~6 quasars

    Get PDF
    We use state-of-the-art hydrodynamical simulations combined with a 1D radiative transfer code to assess the extent to which the highly ionized regions observed close to z~6 quasars, which we refer to as near-zones, can constrain the ionization state of the surrounding IGM. We find the appearance in Lya absorption of a quasar HII ionization front expanding into a neutral IGM can be very similar to a classical proximity zone, produced by the enhancement in ionizing flux close to a quasar embedded in a highly ionized IGM. The observed sizes of these highly ionized near-zones and their redshift evolution can be reproduced for a wide range of IGM neutral hydrogen fractions for plausible values of the luminosity and lifetime of the quasars. The observed near-zone sizes at the highest observed redshifts are equally consistent with a significantly neutral and a highly ionized surrounding IGM. Stronger constraints on the IGM neutral hydrogen fraction can be obtained by considering the relative size of the near-zones in the Lya and Lyb regions of a quasar spectrum. A large sample of high quality quasar absorption spectra with accurate determinations of near-zone sizes and their redshift evolution in both the Lya and Lyb regions should confirm or exclude the possibility that the Universe is predominantly neutral at the highest observed redshifts. The width of the discrete absorption features in these near-zones will contain important additional information on the ionization state and the previous thermal history of the IGM at these redshifts.Comment: 25 pages, 11 figures, accepted for publication in MNRA

    On the rapid demise of Lyman-alpha emitters at z>7 due to the increasing incidence of optically thick absorption systems

    Get PDF
    A variety of independent observational studies have now reported a significant decline in the fraction of Lyman-break galaxies which exhibit Ly-a emission over the redshift interval z=6-7. In combination with the strong damping wing extending redward of Ly-a in the spectrum of the bright z=7.085 quasar ULAS 1120+0641, this has strengthened suggestions that the hydrogen in the intergalactic medium (IGM) is still substantially neutral at z~7. Current theoretical models imply HI fractions as large as 40-90 per cent may be required to explain these data assuming there is no intrinsic evolution in the Ly-a emitter population. We propose that such large neutral fractions are not necessary. Based on a hydrodynamical simulation which reproduces the absorption spectra of high-redshift (z~6-7) quasars, we demonstrate that the opacity of the intervening IGM redward of rest-frame Ly-a can rise rapidly in average regions of the Universe simply because of the increasing incidence of absorption systems which are optically thick to Lyman continuum photons as the tail-end of reionisation is approached. Our simulations suggest these data do not require a large change in the IGM neutral fraction by several tens of per cent from z=6-7, but may instead be indicative of the rapid decrease in the typical mean free path for ionising photons expected during the final stages of reionisation.Comment: 11 pages, 6 figures, accepted to MNRA

    New Measurements of the Ionizing Ultraviolet Background over 2 < z < 5 and Implications for Hydrogen Reionization

    Get PDF
    We present new measurements of the intensity of the ionizing ultraviolet background and the global emissivity of ionizing photons over 2 < z < 5. Our results are based on a suite of updated measurements of physical properties of the high-redshift intergalactic medium (IGM), including gas temperatures and the opacity of the IGM to Ly-alpha and ionizing photons. Consistent with previous works, we find a relatively flat hydrogen photoionization rate over 2 < z < 5, although our measurements are roughly a factor of two higher than the 2008 values of Faucher-Giguere et al., due primarily to our lower gas temperatures. The ionizing emissivity we derive is also generally higher than other recent estimates due to a combination of lower gas temperatures, higher ionizing opacity, and an accounting of cosmological radiative transfer effects. We find evidence that the emissivity increases from z~3 to 5, reaching ~5 ionizing photons per atom per gigayear at z=4.75 for realistic galaxy spectra. We further find that galaxies must dominate the emissivity near 1 Ryd at z > 4, and possibly at all redshifts z > 2.4. Our results suggest that the globally-averaged ionizing "efficiency" of star-forming galaxies increases substantially with redshift over 3.2 < z < 4.75. This trend is consistent with the conclusion often drawn from reionization models that the ionizing efficiency of galaxies must be higher during reionization in order for galaxies to reionize the IGM by z=6. Our emissivity values at z~5 suggest that ionizing photons may have been a factor of two more abundant during the final stages of reionization than previously indicated. The evolution of the ionizing emissivity over 2 < z < 5 suggests, moreover, that the steep decline in the photoionization rate from z~5 to 6 may indicate a rapid evolution in the mean free path at z > 5.Comment: 19 pages, 14 figures, MNRAS, in pres

    The observed ionization rate of the intergalactic medium and the ionizing emissivity at z >5: Evidence for a photon starved and extended epoch of reionization

    Get PDF
    We use a large set of hydrodynamical simulations, combined with measurements of the Lyman alpha opacity of the IGM taken from the literature, to obtain robust estimates for the photoionization rate per hydrogen atom at z=5 and 6. We find the photoionization rate drops by a factor of two and four, respectively, compared to our recent measurements at z = 2 - 4. The number of ionizing photons emitted by known sources at z=5 and 6, based on an extrapolation of source numbers below the detection limit and standard assumptions for the relationship between the ionizing emissivity and observed luminosity density at 1500 Angstroms, are in reasonable agreement with the photoionization rates inferred from the Lyman alpha forest if the escape fraction of ionizing photons from galaxies is large (>= 20 per cent). Claims to the contrary may be attributed to the adoption of an unduly high value for the clumping factor of ionized hydrogen. Using physically motivated assumptions for the mean free path of ionizing photons our measurements of the photoionization rate can be turned into an estimate of the ionizing emissivity. In comoving units the inferred ionizing emissivity is nearly constant over the redshift range 2-6 and corresponds to 1.5-3 photons emitted per hydrogen atom over a time interval corresponding to the age of the Universe at z=6. This strongly suggests that the epoch of reionization was photon-starved and extended. [Abridged]Comment: 20 pages, 9 figures, accepted for publication in MNRA

    A closer look at using quasar near-zones as a probe of neutral hydrogen in the intergalactic medium

    Full text link
    We examine a large set of synthetic quasar spectra to realistically assess the potential of using the relative sizes of highly ionized near-zones in the Lya and Lyb forest as a probe of the neutral hydrogen content of the intergalactic medium (IGM) at z>6. The scatter in the relative near-zone size distribution, induced by underlying fluctuations in the baryonic density field and the filtering of ionizing radiation, is considerable even for fixed assumptions about the IGM neutral fraction. As a consequence, the current observational data cannot distinguish between an IGM which is significantly neutral or highly ionized just above z=6. Under standard assumptions for quasar ages and ionizing luminosities, a future sample of several tens of high resolution Lya and Lyb near-zone spectra should be capable of distinguishing between a volume weighted neutral hydrogen fraction in the IGM which is greater or less than 10 per cent.Comment: 6 pages, 3 figures, accepted for publication in MNRAS letter

    Photo-heating and the fate of hard photons during the reionisation of HeII by quasars

    Full text link
    We use a combination of analytic and numerical arguments to consider the impact of quasar photo-heating during HeII reionisation on the thermal evolution of the intergalactic medium (IGM). We demonstrate that rapid (\Delta z 10^4 K) photo-heating is difficult to achieve across the entire IGM unless quasar spectra are significantly harder than implied by current observational constraints. Although filtering of intrinsic quasar radiation through dense regions in the IGM does increase the mean excess energy per HeII photo-ionisation, it also weakens the radiation intensity and lowers the photo-ionisation rate, preventing rapid heating over time intervals shorter than the local photo-ionisation timescale. Moreover, the hard photons responsible for the strongest heating are more likely to deposit their energy inside dense clumps. The abundance of such clumps is, however, uncertain and model-dependent, leading to a fairly large uncertainty in the photo-heating rates. Nevertheless, although some of the IGM may be exposed to a hardened and weakened ionising background for long periods, most of the IGM must instead be reionised by the more abundant, softer photons and with accordingly modest heating rates (\Delta T < 10^4 K). The repeated ionisation of fossil quasar HeIII regions does not increase the net heating because the recombination times in these regions typically exceed the IGM cooling times and the average time lag between successive rounds of quasar activity. Detailed line-of-sight radiative transfer simulations confirm these expectations and predict a rich thermal structure in the IGM during HeII reionisation. [Abridged]Comment: 20 pages, 6 figures, accepted by MNRA

    The Lyman-alpha forest opacity and the metagalactic hydrogen ionization rate at z~2-4

    Get PDF
    Estimates of the metagalactic hydrogen ionization rate from the Lyman-alpha forest opacity in QSO absorption spectra depend on the complex density distribution of neutral hydrogen along the line-of-sight. We use a large suite of high resolution hydrodynamical simulations to investigate in detail the dependence of such estimates on physical and numerical parameters in the context of Lambda-CDM models. Adopting fiducial values for cosmological parameters together with published values of the temperature of the IGM and the effective optical depth, the metagalactic ionization rates which reproduce the Lyman-alpha effective optical depth at z=[2,3,4] are Gamma_HI=[1.3\pm^0.8_0.5, 0.9\pm0.3, 1.0\pm^0.5_0.3] \times 10^-12 s^-1, respectively. The errors include estimates of uncertainties in the relevant physical parameters and the numerical accuracy of the simulations. We find the errors are dominated by the uncertainty in the temperature of the low-density IGM. The estimated metagalactic hydrogen ionization rate for the neutral hydrogen distribution in the current concordance Lambda-CDM model is more than four times the value inferred for that in an Einstein-de Sitter model of the same r.m.s. density fluctuation amplitude sigma_8. The estimated ionization rate is also more than double that expected from updated estimates of the emissivity of observed QSOs alone. A substantial contribution from galaxies appears to be required at all redshifts.Comment: 13 pages, 7 figures, accepted to MNRAS, minor changes to submitted versio

    Gas around galaxy haloes: methodology comparisons using hydrodynamical simulations of the intergalactic medium

    Get PDF
    We perform cosmological simulations of the intergalactic medium (IGM) at redshift z ∌ 3 using the numerical gravity-hydrodynamics codes gadget-3 and enzo for the purpose of modelling the gaseous environments of galaxies. We identify haloes in the simulations using three different algorithms. Different rank orderings of the haloes by mass result, introducing a limiting factor, in identifying haloes with observed galaxies. We also compare the physical properties of the gas between the two codes, focusing primarily on the gas outside the virial radius, motivated by recent H i absorption measurements of the gas around z ∌ 2–3 galaxies. The internal dispersion velocities of the gas in the haloes have converged for a box size of 30 comoving Mpc, but the centre-of-mass peculiar velocities of the haloes have not up to a box size of 60 comoving Mpc. The density and temperature of the gas within the instantaneous turn-around radii of the haloes are adequately captured for box sizes of 30 Mpc on a side, but the results are highly sensitive to the treatment of unresolved, rapidly cooling gas, with the gas mass fraction within the virial radius severely depleted by star formation in the gadget-3 simulations. Convergence of the gas peculiar velocity field on large scales requires a box size of at least 60 Mpc. Outside the turn-around radius, the physical state of the gas agrees to 30 per cent or better both with box size and between simulation methods. We conclude that generic IGM simulations make accurate predictions for the intergalactic gas properties beyond the halo turn-around radii, but the gas properties on smaller scales are highly dependent on star formation and feedback implementations

    A first direct measurement of the intergalactic medium temperature around a quasar at z=6

    Get PDF
    The thermal state of the intergalactic medium (IGM) provides an indirect probe of both the HI and HeII reionisation epochs. Current constraints on the IGM temperature from the Lya forest are restricted to the redshift range 2<z<4.5, limiting the ability to probe the thermal memory of HI reionisation toward higher redshift. In this work, we present the first direct measurement of the IGM temperature around a z=6 quasar by analysing the Doppler widths of Lya absorption lines in the proximity zone of SDSS J0818+1722. We use a high resolution (R= 40000) Keck/HIRES spectrum in combination with detailed numerical modelling to obtain the temperature at mean density, T_0=23600\pm^5000_6900K (\pm^9200_9300K) at 68 (95) per cent confidence assuming a prior probability 13500K<T_0<38500 K following HI and HeII reionisation. This enables us to place an upper limit on the redshift of HI reionisation, z_H, within 33 comoving Mpc of SDSS J0818+1722. If the quasar reionises the HeII in its vicinity, then in the limit of instantaneous reionisation we infer z_H<9.0 (11.0) at 68 (95) per cent confidence assuming photoheating is the dominant heat source and that HI reionisation is driven by ionising sources with soft spectra, typical of population II stars. If the HI and HeII in the IGM around SDSS J0818+1722 are instead reionised simultaneously by a population of massive metal-free stars, characterised by very hard ionising spectra, we obtain a tighter upper limit of z_H<8.4 (9.4). Initiating reionisation at higher redshifts produces temperatures which are too low with respect to our constraint unless the HI ionising sources or the quasar itself have spectra significantly harder than typically assumed.Comment: 15 pages, 9 figures, accepted to MNRA
    • 

    corecore