10 research outputs found

    Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids

    Get PDF
    <p>Chaplins are small, secreted proteins of streptomycetes that play instrumental roles in the formation of aerial hyphae and attachment of hyphae to surfaces. Here we show that the purified proteins self-assemble at a water/air interface into an asymmetric and amphipathic protein membrane that has an amyloid nature. Cryo-tomography reveals that the hydrophilic surface is relatively smooth, while the hydrophobic side is highly structured and characterized by the presence of small fibrils, which are similar to those observed on the surfaces of aerial hyphae. Interestingly, our work also provides evidence that chaplins in solution assemble into amyloid fibrils with a distinct morphology. These hydrophilic fibrils strongly resemble the structures known to be involved in attachment of Streptomyces hyphae to surfaces. These data for the first time show the assembly of bacterial proteins into two distinct amyloid structures that have different and relevant functions in vivo. (C) 2013 Elsevier Inc. All rights reserved.</p>

    Structural Basis of the Human Endoglin-BMP9 Interaction: Insights into BMP Signaling and HHT1

    No full text
    Endoglin (ENG)/CD105 is an essential endothelial cell co-receptor of the transforming growth factor β (TGF-β) superfamily, mutated in hereditary hemorrhagic telangiectasia type 1 (HHT1) and involved in tumor angiogenesis and preeclampsia. Here, we present crystal structures of the ectodomain of human ENG and its complex with the ligand bone morphogenetic protein 9 (BMP9). BMP9 interacts with a hydrophobic surface of the N-terminal orphan domain of ENG, which adopts a new duplicated fold generated by circular permutation. The interface involves residues mutated in HHT1 and overlaps with the epitope of tumor-suppressing anti-ENG monoclonal TRC105. The structure of the C-terminal zona pellucida module suggests how two copies of ENG embrace homodimeric BMP9, whose binding is compatible with ligand recognition by type I but not type II receptors. These findings shed light on the molecular basis of the BMP signaling cascade, with implications for future therapeutic interventions in this fundamental pathway

    Structures of an Isopenicillin N Converting Ntn-Hydrolase Reveal Different Catalytic Roles for the Active Site Residues of Precursor and Mature Enzyme

    Get PDF
    Penicillium chrysogenum Acyl coenzyme A:isopenicillin N acyltransferase (AT) performs the last step in the biosynthesis of hydrophobic penicillins, exchanging the hydrophilic side chain of a precursor for various hydrophobic side chains. Like other N-terminal nucleophile hydrolases AT is produced as an inactive precursor that matures upon posttranslational cleavage. The structure of a Cys103Ala precursor mutant shows that maturation is autoproteolytic, initiated by Cys103 cleaving its preceding peptide bond. The crystal structure of the mature enzyme shows that after autoproteolysis residues 92–102 fold outwards, exposing a buried pocket. This pocket is structurally and chemically flexible and can accommodate substrates of different size and polarity. Modeling of a substrate-bound state indicates the residues important for catalysis. Comparison of the proposed autoproteolytic and substrate hydrolysis mechanisms shows that in both events the same catalytic residues are used, but that they perform different roles in catalysis.

    Reducing virulence of the human pathogen Burkholderia by altering the substrate specificity of the quorum-quenching acylase PvdQ

    No full text
    The use of enzymes to interfere with quorum sensing represents an attractive strategy to fight bacterial infections. We used PvdQ, an effective quorum-quenching enzyme from Pseudomonas aeruginosa, as a template to generate an acylase able to effectively hydrolyze C8-HSL, the major communication molecule produced by the Burkholderia species. We discovered that the combination of two single mutations leading to variant PvdQLα146W,Fβ24Y conferred high activity toward C8-HSL. Exogenous addition of PvdQLα146W,Fβ24Y dramatically decreased the amount of C8-HSL present in Burkholderia cenocepacia cultures and inhibited a quorum sensing-associated phenotype. The efficacy of this PvdQ variant to combat infections in vivo was further confirmed by its ability to rescue Galleria mellonella larvae upon infection, demonstrating its potential as an effective agent toward Burkholderia infections. Kinetic analysis of the enzymatic activities toward 3-oxo-C12-L-HSL and C8-L-HSL corroborated a substrate switch. This work demonstrates the effectiveness of quorum-quenching acylases as potential novel antimicrobial drugs. In addition, we demonstrate that their substrate range can be easily switched, thereby paving the way to selectively target only specific bacterial species inside a complex microbial community.
    corecore