902 research outputs found

    Le Boeuf a la Mode, Carte des Vins, 1792

    Get PDF
    https://arrow.tudublin.ie/menus/1061/thumbnail.jp

    Semimetalic antiferromagnetism in the half-Heusler compound CuMnSb

    Full text link
    The half-Heusler compound CuMnSb, the first antiferromagnet (AFM) in the Mn-based class of Heuslers and half-Heuslers that contains several conventional and half metallic ferromagnets, shows a peculiar stability of its magnetic order in high magnetic fields. Density functional based studies reveal an unusual nature of its unstable (and therefore unseen) paramagnetic state, which for one electron less (CuMnSn, for example) would be a zero gap semiconductor (accidentally so) between two sets of very narrow, topologically separate bands of Mn 3d character. The extremely flat Mn 3d bands result from the environment: Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below the Fermi level, and the other four tetrahedrally coordinated sites are empty, leaving chemically isolated Mn 3d states. The AFM phase can be pictured heuristically as a self-doped Cu1+^{1+}Mn2+^{2+}Sb3−^{3-} compensated semimetal with heavy mass electrons and light mass holes, with magnetic coupling proceeding through Kondo and/or antiKondo coupling separately through the two carrier types. The ratio of the linear specific heat coefficient and the calculated Fermi level density of states indicates a large mass enhancement m∗/m∼5m^*/m \sim 5, or larger if a correlated band structure is taken as the reference

    The Timing of the Shrew: Continuous Melatonin Treatment Maintains Youthful Rhythmic Activity in Aging Crocidura russula

    Get PDF
    BACKGROUND:Laboratory conditions nullify the extrinsic factors that determine the wild expected lifespan and release the intrinsic or potential lifespan. Thus, wild animals reared in a laboratory often show an increased lifespan, and consequently an increased senescence phase. Senescence is associated with a broad suite of physiological changes, including a decreased responsiveness of the circadian system. The time-keeping hormone melatonin, an important chemical player in this system, is suspected to have an anti-aging role. The Greater White-toothed shrew Crocidura russula is an ideal study model to address questions related to aging and associated changes in biological functions: its lifespan is short and is substantially increased in captivity; daily and seasonal rhythms, while very marked the first year of life, are dramatically altered during the senescence process which starts during the second year. Here we report on an investigation of the effects of melatonin administration on locomotor activity of aging shrews. METHODOLOGY/PRINCIPAL FINDINGS:1) The diel fluctuations of melatonin levels in young, adult and aging shrews were quantified in the pineal gland and plasma. In both, a marked diel rhythm (low diurnal concentration; high nocturnal concentration) was present in young animals but then decreased in adults, and, as a result of a loss in the nocturnal production, was absent in old animals. 2) Daily locomotor activity rhythm was monitored in pre-senescent animals that had received either a subcutaneous melatonin implant, an empty implant or no implant at all. In non-implanted and sham-implanted shrews, the rhythm was well marked in adults. A marked degradation in both period and amplitude, however, started after the age of 14-16 months. This pattern was considerably delayed in melatonin-implanted shrews who maintained the daily rhythm for significantly longer. CONCLUSIONS:This is the first long term study (>500 days observation of the same individuals) that investigates the effects of continuous melatonin delivery. As such, it sheds new light on the putative anti-aging role of melatonin by demonstrating that continuous melatonin administration delays the onset of senescence. In addition, the shrew appears to be a promising mammalian model for elucidating the precise relationships between melatonin and aging

    Solving thermal issues in tensile-strained Ge microdisks

    Get PDF
    International audienceWe propose to use a Ge-dielectric-metal stacking to allow one to address both thermal management with the metal as an efficient heat sink and tensile strain engineering with the buried dielectric as a stressor layer. This scheme is particularly useful for the development of Ge-based optical sources. We demonstrate experimentally the relevance of this approach by comparing the optical response of tensile-strained Ge microdisks with an Al heat sink or an oxide pedestal. Photoluminescence indicates a much reduced temperature rise in the microdisk (16 K with Al pedestal against 200 K with SiO 2 pedestal under a 9 mW continuous wave optical pumping). An excellent agreement is found with finite element modeling of the temperature rise. This original stacking combining metal and dielectrics is promising for integrated photonics where thermal management is an issue

    New combined PIC-MCC approach for fast simulation of a radio frequency discharge at low gas pressure

    Full text link
    A new combined PIC-MCC approach is developed for accurate and fast simulation of a radio frequency discharge at low gas pressure and high density of plasma. Test calculations of transition between different modes of electron heating in a ccrf discharge in helium and argon show a good agreement with experimental data. We demonstrate high efficiency of the combined PIC-MCC algorithm, especially for the collisionless regime of electron heating.Comment: 6 paged, 8 figure

    Polarization Control of the Non-linear Emission on Semiconductor Microcavities

    Full text link
    The degree of circular polarization (℘\wp) of the non-linear emission in semiconductor microcavities is controlled by changing the exciton-cavity detuning. The polariton relaxation towards \textbf{K} ∼0\sim 0 cavity-like states is governed by final-state stimulated scattering. The helicity of the emission is selected due to the lifting of the degeneracy of the ±1\pm 1 spin levels at \textbf{K} ∼0\sim 0. At short times after a pulsed excitation ℘\wp reaches very large values, either positive or negative, as a result of stimulated scattering to the spin level of lowest energy (+1/−1+1/-1 spin for positive/negative detuning).Comment: 8 pages, 3 eps figures, RevTeX, Physical Review Letters (accepted

    Azimuthal structures and turbulent transport in Penning discharge

    Full text link
    Azimuthal structures in cylindrical Penning discharge are studied with 2D3V radial-azimuthal PIC/MCC model with the axial magnetic field. The discharge is self-consistently supported by ionization due to the axial injection of electrons. It is shown that the steady-state discharge can be supported in two different regimes with different type of observed azimuthal structures. The transition between the regimes is controlled by the mechanism of the energy input to the discharge. In the first regime (low energy of the injected electrons), with the pronounced m=1m=1 spoke activity, the power input is dominated by the energy absorption due to the radial current and self-consistent electric field. In the other regime (higher energy of the injected electrons), with prevalent small scale m>1m>1 spiral structures, and the lower values of the anomalous transport, the total energy deposited to the discharge is lower and is mostly due to the direct input of the kinetic energy from the axial electron beam. We show that the large (m=1) spoke and small scale structures occur as a result of Simon-Hoh and lower hybrid instabilities driven by the electric field, density gradient, and collisions. We show that the spoke frequency follows the equilibrium ion rotation frequency
    • …
    corecore