13 research outputs found

    Observation of Asymmetric Transport in Structures with Active Nonlinearities

    Get PDF
    A mechanism for asymmetric transport based on the interplay between the fundamental symmetries of parity (P) and time (T) with nonlinearity is presented. We experimentally demonstrate and theoretically analyze the phenomenon using a pair of coupled van der Pol oscillators, as a reference system, one with anharmonic gain and the other with complementary anharmonic loss; connected to two transmission lines. An increase of the gain/loss strength or the number of PT-symmetric nonlinear dimers in a chain, can increase both the asymmetry and transmittance intensities.Comment: 5 pages, 5 figure

    High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete nonlinear Schrödinger equation

    Get PDF
    While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature

    Fano Resonances in Flat Band Networks

    Full text link
    Linear wave equations on Hamiltonian lattices with translational invariance are characterized by an eigenvalue band structure in reciprocal space. Flat band lattices have at least one of the bands completely dispersionless. Such bands are coined flat bands. Flat bands occur in fine-tuned networks, and can be protected by (e.g. chiral) symmetries. Recently a number of such systems were realized in structured optical systems, exciton-polariton condensates, and ultracold atomic gases. Flat band networks support compact localized modes. Local defects couple these compact modes to dispersive states and generate Fano resonances in the wave propagation. Disorder (i.e. a finite density of defects) leads to a dense set of Fano defects, and to novel scaling laws in the localization length of disordered dispersive states. Nonlinearities can preserve the compactness of flat band modes, along with renormalizing (tuning) their frequencies. These strictly compact nonlinear excitations induce tunable Fano resonances in the wave propagation of a nonlinear flat band lattice
    corecore