119 research outputs found

    Receptor for activated C-kinase (RACK1) plays a central role in Ras-mediated signal transduction

    Get PDF
    Presented at the 16th International Charles Heidelberger Symposium on Cancer Research, Coimbra, Portugal. 26–28 September 2010Peer ReviewedpublishedVersio

    Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents

    Get PDF
    Adipose tissue metabolism is closely linked to insulin resistance, and differential fat distributions are associated with disorders like hypertension, diabetes, and cardiovascular disease. Adipose tissues vary in their impact on metabolic risk due to diverse gene expression profiles, leading to differences in lipolysis and in the production and release of adipokines and cytokines, thereby affecting the function of other tissues. In this paper, the roles of the various adipose tissues in obesity are summarized, with particular focus on mitochondrial function. In addition, we discuss how a functionally mitochondrial-targeted compound, the modified fatty acid tetradecylthioacetic acid (TTA), can influence mitochondrial function and decrease the size of specific fat depots

    Tissue-Specific Effects of Bariatric Surgery Including Mitochondrial Function

    Get PDF
    A better understanding of the molecular links between obesity and disease is potentially of great benefit for society. In this paper we discuss proposed mechanisms whereby bariatric surgery improves metabolic health, including acute effects on glucose metabolism and long-term effects on metabolic tissues (adipose tissue, skeletal muscle, and liver) and mitochondrial function. More short-term randomized controlled trials should be performed that include simultaneous measurement of metabolic parameters in different tissues, such as tissue gene expression, protein profile, and lipid content. By directly comparing different surgical procedures using a wider array of metabolic parameters, one may further unravel the mechanisms of aberrant metabolic regulation in obesity and related disorders

    Plasma Cholesterol- and Body Fat-Lowering Effects of Chicken Protein Hydrolysate and Oil in High-Fat Fed Male Wistar Rats

    Get PDF
    Rest raw materials provide a new source of bioactive dietary ingredients, and this study aimed to determine the health effects of diets with chicken protein hydrolysate (CPH) and chicken oil (CO) generated from deboned chicken meat. Male Wistar rats (n = 56) were divided into seven groups in three predefined sub-experiments to study the effects of protein source (casein, chicken fillet, pork fillet, and CPH), the dose-effect of CPH (50% and 100% CPH), and the effects of combining CPH and CO. Rats were fed high-fat diets for 12 weeks, and casein and chicken fillet were used as controls in all sub-experiments. While casein, chicken-, or pork fillet diets resulted in similar weight gain and plasma lipid levels, the CPH diet reduced plasma total cholesterol. This effect was dose dependent and accompanied with the reduced hepatic activities of acetyl-CoA carboxylase and fatty acid synthase. Further, rats fed combined CPH and CO showed lower weight gain, and higher hepatic mitochondrial fatty acid oxidation, plasma L-carnitine, short-chain acylcarnitines, TMAO, and acetylcarnitine/palmitoylcarnitine. Thus, in male Wistar rats, CPH and CO lowered plasma cholesterol and increased hepatic fatty acid oxidation compared to whole protein diets, pointing to potential health-beneficial bioactive properties of these processed chicken rest raw materials.publishedVersio

    Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice

    Get PDF
    Background: Marine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model. Methods: Male C57BL/6J mice were fed either a high-fat diet (HF) containing 24% (wt/wt) fat (21.3% lard and 2.3% soy oil), or the HF diet supplemented with FO (15.7% lard, 2.3% soy oil and 5.8% FO) or KO (15.6% lard, 2.3% soy oil and 5.7% KO) for 6 weeks. Total levels of cholesterol, TAG, PLs, and fatty acid composition were measured in plasma and liver. Gene regulation was investigated using quantitative PCR in liver and intestinal epithelium. Results: Plasma cholesterol (esterified and unesterified), TAG and PLs were significantly decreased with FO. Analysis of the plasma lipoprotein particles indicated that the lipid lowering effect by FO is at least in part due to decreased very low density lipoprotein (VLDL) content in plasma with subsequent liver lipid accumulation. KO lowered plasma non-esterified fatty acids (NEFA) with a minor effect on fatty acid accumulation in the liver. In spite of a lower omega-3 fatty acid content in the KO supplemented diet, plasma and liver PLs omega-3 levels were similar in the two groups, indicating a higher bioavailability of omega-3 fatty acids from KO. KO more efficiently decreased arachidonic acid and its elongation/desaturation products in plasma and liver. FO mainly increased the expression of several genes involved in fatty acid metabolism, while KO specifically decreased the expression of genes involved in the early steps of isoprenoid/ cholesterol and lipid synthesis. Conclusions: The data show that both FO and KO promote lowering of plasma lipids and regulate lipid homeostasis, but with different efficiency and partially via different mechanisms

    Short-term activation of peroxisome proliferator-activated receptors α and γ induces tissue-specific effects on lipid metabolism and fatty acid composition in male Wistar rats

    Get PDF
    Dietary fatty acids (FAs) affect certain metabolic routes, including pathways controlled by the peroxisome proliferator-activated receptors (PPARs), but tissue-specific effects are not well-defined. Thus, the aim was to compare the metabolic response in hepatic, adipose, and cardiac tissues after treatment with specific PPAR agonists. Male Wistar rats were randomized into three groups: a control group receiving placebo (n=8); a PPARα agonist group receiving WY-14,643 (n=6); and a PPARγ agonist group receiving rosiglitazone (n=6) for 12 days. All animals received a low-fat standard chow diet and were given a daily dose of placebo or agonist orally. Lipids and FA methyl esters were measured in plasma, liver, and heart and gene expression was measured in liver and adipose tissue, while enzyme activities were measured in liver. Treatment with the PPARα agonist was associated with higher liver mass relative to body weight (liver index), lower plasma, and hepatic total cholesterol, as well as lower plasma carnitine and acylcarnitines, compared with control. In heart, PPARα activation leads to overall lower levels of free FAs and specific changes in certain FAs, compared with control. Furthermore, β-oxidation in liver and the enzymatic activities of well-known PPARα targeted genes were higher following PPARα administration. Overall, rats treated with the PPARα agonist had higher hepatic saturated FAs (SFAs) and monounsaturated FAs (MUFAs) and lower n-6 and n-3 PUFAs, compared to control. Treatment with the PPARγ agonist was associated with a lower liver index, lower plasma triglycerides (TAG) and phospholipids, and higher hepatic phospholipids, compared with control. PPARγ target genes were increased specifically in adipose tissue. Moreover, lower total cardiac FAs and SFA and higher cardiac n-6 PUFA were also associated with PPARγ activation. Altogether, there were characteristic effects of PPARα activation in liver and heart, as well as in plasma. PPARγ effects were not only confined to adipose tissue, but specific effects were also seen in liver, heart, and plasma. In conclusion, short-term treatment with PPAR agonists induced tissue-specific effects on FA composition in liver and heart. Moreover, both PPARα and PPARγ activation lowered plasma TAG and phospholipids, most likely through effects on liver and adipose tissue, respectively. In future studies we aim to reveal whether similar patterns can be found through diet-induced activation of specific pathways.publishedVersio

    Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study

    Get PDF
    Background: Lipid abnormalities, enhanced inflammation and oxidative stress seem to represent a vicious circle in atherogenesis, and therapeutic options directed against these processes seems like a reasonable approach in the management of atherosclerotic disorders. Krill oil (RIMFROST Sublime®) is a phospholipid-rich oil with eicosapentaenoic acid (EPA): docosahexaenoic acid (DHA) ratio of 1.8:1. In this pilot study we determined if krill oil could favourable affect plasma lipid parameters and parameters involved in the initiation and progression of atherosclerosis. Methods: The study was conducted as a 28 days intervention study examining effect-parameters of dietary supplementation with krill oil (832.5 mg EPA and DHA per day). 17 healthy volunteers in the age group 18–36 (mean age 23 ± 4 years) participated. Plasma lipids, lipoprotein particle sizes, fatty acid composition in plasma and red blood cells (RBCs), plasma cytokines, antioxidant capacity, acylcarntines, carnitine, choline, betaine, and trimethylamine-N-oxide (TMAO) were measured before and after supplementation. Results: Plasma triacylglycerol (TAG) and large very-low density lipoprotein (VLDL) & chylomicron particle concentrations decreased after 28 days of krill oil intake. A significant reduction in the TAG/HDL cholesterol resulted. Krill oil supplementation decreased n-6/n-3 polyunsaturated fatty acids (PUFA) ratio both in plasma and RBCs. This was due to increased EPA, DHA and docosapentaenoic acid (DPA) and reduced amount of arachidonic acid (AA). The increase of n-3 fatty acids and wt % of EPA and DHA in RBC was of smaller magnitude than found in plasma. Krill oil intake increased the antioxidant capacity, double bond index (DBI) and the fatty acid anti-inflammatory index. The plasma atherogenicity index remained constant whereas the thrombogenicity index decreased. Plasma choline, betaine and the carnitine precursor, γ-butyrobetaine were increased after krill oil supplementation whereas the TMAO and carnitine concentrations remained unchanged. Conclusion: Krill oil consumption is considered health beneficial as it decreases cardiovascular disease risk parameters through effects on plasma TAGs, lipoprotein particles, fatty acid profile, redox status and possible inflammation. Noteworthy, no adverse effects on plasma levels of TMAO and carnitine were found.publishedVersio

    A randomized, double-blind, placebo-controlled clinical study to investigate the efficacy of herring roe oil for treatment of psoriasis

    Get PDF
    The effect of omega-3 polyunsaturated fatty acid supplements in patients with psoriasis vulgaris has previously been investigated, but interventions varied in source, composition, dose, administration route and duration of treatment. The observed beneficial effects in patients with psoriasis vulgaris using herring roe oil as a dietary supplement prompted this investigation. This randomised, double-blind and placebo-controlled study was designed and performed to explore the efficacy and safety of herring roe oil supplementation in 64 patients with plaque psoriasis (ClinicalTrials.gov: NCT03359577). The primary end-point was comparing the change in mean Psoriasis Area Severity Index (PASI) scores in the herring roe oil treatment group and the placebo group from baseline to week 26. In the intention-to-treat population, a statistically significant improvement in the mean PASI score was observed with herring roe oil compared to placebo at 26 weeks. In the recruited patient group, the measured improvement was greatest in patients with a PASI score from 5.5–9.9 at baseline.publishedVersio
    corecore