348 research outputs found
Chaotic ray dynamics in an optical cavity with a beam splitter
We investigate the ray dynamics in an optical cavity when a ray splitting
mechanism is present. The cavity is a conventional two-mirror stable resonator
and the ray splitting is achieved by inserting an optical beam splitter
perpendicular to the cavity axis. Using Hamiltonian optics, we show that such a
simple device presents a surprisingly rich chaotic ray dynamics.Comment: 6 pages, 4 figure
Large n limit of Gaussian random matrices with external source, Part III: Double scaling limit
We consider the double scaling limit in the random matrix ensemble with an
external source \frac{1}{Z_n} e^{-n \Tr({1/2}M^2 -AM)} dM defined on Hermitian matrices, where is a diagonal matrix with two eigenvalues of equal multiplicities. The value is critical since the eigenvalues
of accumulate as on two intervals for and on one
interval for . These two cases were treated in Parts I and II, where
we showed that the local eigenvalue correlations have the universal limiting
behavior known from unitary random matrix ensembles. For the critical case
new limiting behavior occurs which is described in terms of Pearcey
integrals, as shown by Br\'ezin and Hikami, and Tracy and Widom. We establish
this result by applying the Deift/Zhou steepest descent method to a -matrix valued Riemann-Hilbert problem which involves the construction of a
local parametrix out of Pearcey integrals. We resolve the main technical issue
of matching the local Pearcey parametrix with a global outside parametrix by
modifying an underlying Riemann surface.Comment: 36 pages, 9 figure
Output functions and fractal dimensions in dynamical systems
We present a novel method for the calculation of the fractal dimension of
boundaries in dynamical systems, which is in many cases many orders of
magnitude more efficient than the uncertainty method. We call it the Output
Function Evaluation (OFE) method. The OFE method is based on an efficient
scheme for computing output functions, such as the escape time, on a
one-dimensional portion of the phase space. We show analytically that the OFE
method is much more efficient than the uncertainty method for boundaries with
, where is the dimension of the intersection of the boundary with a
one-dimensional manifold. We apply the OFE method to a scattering system, and
compare it to the uncertainty method. We use the OFE method to study the
behavior of the fractal dimension as the system's dynamics undergoes a
topological transition.Comment: Uses REVTEX; to be published in Phys. Rev. Let
Discretization Dependence of Criticality in Model Fluids: a Hard-core Electrolyte
Grand canonical simulations at various levels, -20, of fine- lattice
discretization are reported for the near-critical 1:1 hard-core electrolyte or
RPM. With the aid of finite-size scaling analyses it is shown convincingly
that, contrary to recent suggestions, the universal critical behavior is
independent of (\grtsim 4); thus the continuum RPM
exhibits Ising-type (as against classical, SAW, XY, etc.) criticality. A
general consideration of lattice discretization provides effective
extrapolation of the {\em intrinsically} erratic -dependence, yielding
(\Tc^ {\ast},\rhoc^{\ast})\simeq (0.0493_{3},0.075) for the
RPM.Comment: 4 pages including 4 figure
Exact solution of the six-vertex model with domain wall boundary condition. Critical line between ferroelectric and disordered phases
This is a continuation of the papers [4] of Bleher and Fokin and [5] of
Bleher and Liechty, in which the large asymptotics is obtained for the
partition function of the six-vertex model with domain wall boundary
conditions in the disordered and ferroelectric phases, respectively. In the
present paper we obtain the large asymptotics of on the critical line
between these two phases.Comment: 22 pages, 6 figures, to appear in the Journal of Statistical Physic
Spectral statistics for quantized skew translations on the torus
We study the spectral statistics for quantized skew translations on the
torus, which are ergodic but not mixing for irrational parameters. It is shown
explicitly that in this case the level--spacing distribution and other common
spectral statistics, like the number variance, do not exist in the
semiclassical limit.Comment: 7 pages. One figure, include
Unique positive solution for an alternative discrete Painlevé I equation
We show that the alternative discrete Painleve I equation has a unique solution which remains positive for all n >0. Furthermore, we identify this positive solution in terms of a special solution of the second Painleve equation involving the Airy function Ai(t). The special-function solutions of the second Painleve equation involving only the Airy function Ai(t) therefore have the property that they remain positive for all n>0 and all t>0, which is a new characterization of these special solutions of the second Painlevé equation and the alternative discrete Painlevé I equation
Spectra of random Hermitian matrices with a small-rank external source: supercritical and subcritical regimes
Random Hermitian matrices with a source term arise, for instance, in the
study of non-intersecting Brownian walkers \cite{Adler:2009a, Daems:2007} and
sample covariance matrices \cite{Baik:2005}.
We consider the case when the external source matrix has two
distinct real eigenvalues: with multiplicity and zero with multiplicity
. The source is small in the sense that is finite or , for . For a Gaussian potential, P\'ech\'e
\cite{Peche:2006} showed that for sufficiently small (the subcritical
regime) the external source has no leading-order effect on the eigenvalues,
while for sufficiently large (the supercritical regime) eigenvalues
exit the bulk of the spectrum and behave as the eigenvalues of
Gaussian unitary ensemble (GUE). We establish the universality of these results
for a general class of analytic potentials in the supercritical and subcritical
regimes.Comment: 41 pages, 4 figure
The Julia sets and complex singularities in hierarchical Ising models
We study the analytical continuation in the complex plane of free energy of
the Ising model on diamond-like hierarchical lattices. It is known that the
singularities of free energy of this model lie on the Julia set of some
rational endomorphism related to the action of the Migdal-Kadanoff
renorm-group. We study the asymptotics of free energy when temperature goes
along hyperbolic geodesics to the boundary of an attractive basin of . We
prove that for almost all (with respect to the harmonic measure) geodesics the
complex critical exponent is common, and compute it
- âŠ