1,073 research outputs found

    Prospects for Photo Electron Spectroscopy in a Scanning Transmission Electron Microscope

    Get PDF
    High spatial resolution microanalysis in scanning transmission electron microscopes is most easily performed when the specimen is inside a magnetic immersion objective lens. Recently a technique has been developed to perform spectroscopy of electrons that originate in this magnetic field. A very special form of photo electron spectroscopy is then possible for thin specimens in the microscope. An energy loss ΔE of a primary electron has the same physical effect as the absorption of a photon of energy ΔE. A coincidence measurement between energy loss electrons and the emitted electrons is expected to give a so called coincidence electron spectrum, or (e,2e) spectrum, of a very small area, which gives the same physical information as photo electron spectroscopy. Normal photo electron spectroscopy of limited spatial resolution, but with high collection efficiency, should also be possible in a scanning transmission electron microscope if the specimen is illuminated with a photon beam. Experiments to test the expectations are in progress

    Measuring the cosmic ray acceleration efficiency of a supernova remnant

    Get PDF
    Cosmic rays are the most energetic particles arriving at earth. Although most of them are thought to be accelerated by supernova remnants, the details of the acceleration process and its efficiency are not well determined. Here we show that the pressure induced by cosmic rays exceeds the thermal pressure behind the northeast shock of the supernova remnant RCW 86, where the X-ray emission is dominated by synchrotron radiation from ultra-relativistic electrons. We determined the cosmic-ray content from the thermal Doppler broadening measured with optical spectroscopy, combined with a proper-motion study in X- rays. The measured post-shock proton temperature in combination with the shock velocity does not agree with standard shock heating, implying that >50% of the post-shock pressure is produced by cosmic rays.Comment: Published in Science express, 10 pages, 5 figures and 2 table

    HPV type concordance in sexual couples determines the effect of condoms on regression of flat penile lesions

    Get PDF
    We earlier demonstrated, in a randomised clinical trial, that the regression time of flat penile lsions in male sexual partners of women with cervical intraepithelial neoplasia (CIN) was shorter in men who used condoms compared to those who did not. To further evaluate this finding, we examined whether the effect of condom use on the regression of flat penile lesions depends on the presence of human papillomavirus (HPV) type concordance in sexual couples, as determined in cervical and penile scrapes by GP5+/6+ PCR testing. A Cox model with time-dependent covariates showed a beneficial effect of condoms on regression of flat penile lesions in concordant couples (hazard ratio 2.63, 95% CI 1.07–6.48) but not in those who were nonconcordant. When both partners harboured different HPV types, no effect of condoms was found (hazard ratio 0.90, 95% CI 0.27–2.96). Delayed regression of flat penile lesions was associated with either stable lesions or with new penile lesions developing at sites surrounding pre-existing lesions suggesting reinfection of the penile epithelium. We conclude that condom use blocks sexual HPV transmission by preventing reinfection and development of new penile lesions in men who are susceptible to the same type as present in the female partner

    The X-ray synchrotron emission of RCW 86 and the implications for its age

    Get PDF
    We report here X-ray imaging spectroscopy observations of the northeastern shell of the supernova remnant RCW 86 with Chandra and XMM-Newton. Along this part of the shell the dominant X-ray radiation mechanism changes from thermal to synchrotron emission. We argue that both the presence of X-ray synchrotron radiation and the width of the synchrotron emitting region suggest a locally higher shock velocity of V_s = 2700 km/s and a magnetic field of B = 24+/-5 microGauss. Moreover, we also show that a simple power law cosmic ray electron spectrum with an exponential cut-off cannot explain the broad band synchrotron emission. Instead a concave electron spectrum is needed, as predicted by non-linear shock acceleration models. Finally, we show that the derived shock velocity strengthens the case that RCW 86 is the remnant of SN 185.Comment: 5 pages, 4 figures. The last figure is intended as a color plate. Accepted by ApJ Letter

    The Radial Structure of the Cygnus Loop Supernova Remnant --- Possible evidence of a cavity explosion ---

    Get PDF
    We observed the North-East (NE) Limb toward the center region of the Cygnus Loop with the ASCA Observatory. We found a radial variation of electron temperature (kTe) and ionization timescale (log(\tau)) whereas no variation could be found for the abundances of heavy elements. In this paper, we re-analyzed the same data set and new observations with the latest calibration files. Then we constructed the precise spatial variations of kTe, log(\tau), and abundances of O, Ne, Mg, Si, and Fe over the field of view (FOV). We found a spatial variation not only in kTe and in log(\tau) but also in most of heavy elements. As described in Miyata et al. (1994), values of kTe increase and those of log(\tau) decrease toward the inner region. We found that the abundance of heavy elements increases toward the inner region. The radial profiles of O, Ne, and Fe show clear jump structures at a radius of 0.9 Rs, where Rs is the shock radius. Outside of 0.9 Rs, abundances of all elements are constant. On the contrary, inside of 0.9 Rs, abundances of these elements are 20--30 % larger than those obtained outside of 0.9 Rs. The radial profile of kTe also shows the jump structure at 0.9 Rs. This means that the hot and metal rich plasma fills the volume inside of 0.9 Rs. We concluded that this jump structure was the possible evidence for the pre-existing cavity produced by the precursor. If the ejecta fills inside of 0.9 Rs, the total mass of the ejecta was roughly 4\Msun. We then estimated the main-sequence mass to be roughly 15\Msun, which supports the massive star in origin of the Cygnus Loop supernova remnant and the existence of a pre-existing cavity.Comment: 37 pages, 14 figures. Accepted for publication of Ap
    • …
    corecore