11 research outputs found

    MEQSILHOUETTE: a mm-VLBI observation and signal corruption simulator

    Get PDF
    The Event Horizon Telescope (EHT) aims to resolve the innermost emission of nearby supermassive black holes, Sgr A* and M87, on event horizon scales. This emission is predicted to be gravitationally lensed by the black hole which should produce a shadow (or silhouette) feature, a precise measurement of which is a test of gravity in the strong-field regime. This emission is also an ideal probe of the innermost accretion and jet-launch physics, offering the new insights into this data-limited observing regime. The EHT will use the technique of Very Long Baseline Interferometry (VLBI) at (sub)millimetre wavelengths, which has a diffraction limited angular resolution of order ~ 10 µ-arcsec. However, this technique suffers from unique challenges, including scattering and attenuation in the troposphere and interstellar medium; variable source structure; as well as antenna pointing errors comparable to the size of the primary beam. In this thesis, we present the meqsilhouette software package which is focused towards simulating realistic EHT data. It has the capability to simulate a time-variable source, and includes realistic descriptions of the effects of the troposphere, the interstellar medium as well as primary beams and associated antenna pointing errors. We have demonstrated through several examples simulations that these effects can limit the ability to measure the key science parameters. This simulator can be used to research calibration, parameter estimation and imaging strategies, as well as gain insight into possible systematic uncertainties

    Towards the first detection of strongly lensed HI emission

    Full text link
    We report interferometric observations tuned to the redshifted neutral hydrogen (HI) 21cm emission line in three strongly lensed galaxies at z0.4z \sim 0.4 with the Giant Metrewave Radio Telescope (GMRT). One galaxy spectrum (J1106+5228 at z=0.407) shows evidence of a marginal detection with an integrated signal-to-noise ratio of 3.8, which, if confirmed by follow-up observations, would represent the first strongly lensed and most distant individual galaxy detected in HI emission. Two steps are performed to transcribe the lensed integrated flux measurements into HI mass measurements for all three target galaxies. First, we calculate the HI magnification factor μ\mu by applying general relativistic ray-tracing to a physical model of the source-lens system. The HI magnification generally differs from the optical magnification and depends largely on the intrinsic HI mass MHIM_{\rm HI} due to the HI mass-size relation. Second, we employ a Bayesian formalism to convert the integrated flux, amplified by the MHIM_{\rm HI}-dependent magnification factor μ\mu, into a probability density for MHIM_{\rm HI}, accounting for the asymmetric uncertainty due to the declining HI mass function (Eddington bias). In this way, we determine a value of log10(MHI/M)=10.20.7+0.3\log_{\rm 10} (M_{\rm HI}/M_\odot) = 10.2^{+0.3}_{-0.7} for J1106+5228, consistent with the estimate of 9.4±0.39.4\pm0.3 from the optical properties of this galaxy. The HI mass of the other two sources are consistent with zero within a 95 per cent confidence interval however we still provide upper limits for both sources and a 1σ1\sigma lower limit for J1250-0135 using the same formalism.Comment: Accepted by MNRAS, no changes made. 12 pages, 7 figure

    Neutral Atomic Hydrogen in Gravitationally Lensed Systems

    Get PDF
    Thesis (PhD) -- Faculty of Law, Law, 202

    MEQSILHOUETTE: a mm-VLBI observation and signal corruption simulator

    Get PDF
    The Event Horizon Telescope (EHT) aims to spatially resolve the silhouette (or shadow) of the supermassive black holes in the Galactic Centre (Sgr A⋆) and M87. The primary scientific objectives are to test general relativity in the strong-field regime and to probe accretion and jet-launch physics at event-horizon scales. This is made possible by the technique of very long baseline interferometry at (sub)millimetre wavelengths, which can achieve angular resolutions of order ∼ 10 μ-arcsec. However, this approach suffers from unique observational challenges, including scattering in the troposphere and interstellar medium; rapidly time-variable source structure in both polarized and total intensity; as well as non-negligible antenna pointing errors. In this, the first paper in a series, we present the MEQSILHOUETTE software package which is specifically designed to accurately simulate EHT observations. It includes realistic descriptions of a number of signal corruptions that can limit the ability to measure the key science parameters. This can be used to quantify calibration requirements, test parameter estimation and imaging strategies, and investigate systematic uncertainties that may be present. In doing so, a stronger link can be made between observational capabilities and theoretical predictions, with the goal of maximizing scientific output from the upcoming order of magnitude increase in EHT sensitivity

    MIGHTEE-HI : discovery of an H I-rich galaxy group at z = 0.044 with MeerKAT

    Get PDF
    We present the serendipitous discovery of a galaxy group in the XMM-LSS field with MIGHTEE Early Science observations. 20 galaxies are detected in H I in this z ∼ 0.044 group, with a 3σ column density sensitivity of NH I = 1.6 × 1020 cm−2. This group has not been previously identified, despite residing in a well-studied extragalactic legacy field. We present spatially resolved H I total intensity and velocity maps for each of the objects which reveal environmental influence through disturbed morphologies. The group has a dynamical mass of log10(Mdyn/M) = 12.32, and is unusually gas-rich, with an H I-to-stellar mass ratio of log10(f ∗ H I ) = −0.2, which is 0.7 dex greater than expected. The group’s high H I content, spatial, velocity, and identified galaxy type distributions strongly suggest that it is in the early stages of its assembly. The discovery of this galaxy group is an example of the importance of mapping spatially resolved H I in a wide range of environments, including galaxy groups. This scientific goal has been dramatically enhanced by the high sensitivity, large field-of-view, and wide instantaneous bandwidth of the MeerKAT telescope.http://mnras.oxfordjournals.orgpm2021Physic

    MeqSilhouette v2: spectrally resolved polarimetric synthetic data generation for the event horizon telescope

    Get PDF
    We present MeqSilhouette v2.0 (MeqSv2), a fully polarimetric, time-and frequency-resolved synthetic data generation software for simulating millimetre (mm) wavelength very long baseline interferometry (VLBI) observations with heterogeneous arrays. Synthetic data are a critical component in understanding real observations, testing calibration and imaging algorithms, and predicting performance metrics of existing or proposed sites. MeqSv2 applies physics-based instrumental and atmospheric signal corruptions constrained by empirically derived site and station parameters to the data. The new version is capable of applying instrumental polarization effects and various other spectrally resolved effects using the Radio Interferometry Measurement Equation (RIME) formalism and produces synthetic data compatible with calibration pipelines designed to process real data. We demonstrate the various corruption capabilities of MeqSv2 using different arrays, with a focus on the effect of complex bandpass gains on closure quantities for the EHT at 230 GHz. We validate the frequency-dependent polarization leakage implementation by performing polarization self-calibration of synthetic EHT data using PolSolve. We also note the potential applications for cm-wavelength VLBI array analysis and design and future directions.http://mnras.oxfordjournals.orghj2022Physic

    H I in and behind the Hubble Frontier Field clusters : a deep MeerKAT pilot search out to z similar to 0.5

    No full text
    Please read abstract in the article.http://mnras.oxfordjournals.orghj2022Physic

    Looking at the distant universe with the MeerKAT array: discovery of a luminous OH megamaser at z > 0.5

    Get PDF
    In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (H i), radio surveys to probe the cosmic evolution of H i in galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep H i survey, we report the first untargeted detection of an OHM at z > 0.5, LADUMA J033046.20-275518.1 (nicknamed "Nkalakatha"). The host system, WISEA J033046.26-275518.3, is an infrared-luminous radio galaxy whose optical redshift z ≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshift z OH = 0.5225 ± 0.0001 rather than H i at lower redshift. The detected spectral line has 18.4σ peak significance, a width of 459 ± 59 km s-1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103 L ⊙, placing it among the most luminous OHMs known. The galaxy's far-infrared luminosity L FIR = (1.576 ±0.013) × 1012 L ⊙ marks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts
    corecore