40 research outputs found

    Chemical transformations in organic aerosol from biomass burning

    No full text
    International audienceFine aerosol particles were collected separately during daytime and nighttime at a tropical pasture site in Rondônia, Brazil, during the burning and dry-to-wet transition period in 2002. Total carbon (TC) and water-soluble organic carbon (WSOC) were measured by evolved gas analysis (EGA). Based on the thermochemical properties of the fine aerosol, the relative amounts of the low and higher molecular weight compounds were estimated. It was found that the thermally refractory (possibly higher molecular weight) compounds dominated the TC composition. Their contribution to TC was higher in the daytime samples than in the nighttime ones. The relative share of WSOC also showed a statistically significant diel variation and so did its refractory fraction. Anhydrosugars and phenolic acids were determined by GC-MS and their diel variation was studied. Based on the decrease of their relative concentrations between the biomass burning and transition periods and their distinctly different diel variations, we suggest that the phenolic acids may undergo chemical transformations in the aerosol phase, possibly towards more refractory compounds (humic-like substances, HULIS), as has been suggested previously. These conclusions are supported by the results of the thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry of the same filter samples

    Lineage Reconstruction of In Vitro Identified Antigen-Specific Autoreactive B Cells from Adaptive Immune Receptor Repertoires

    Get PDF
    The emergence, survival, growth and maintenance of autoreactive (AR) B-cell clones, the hallmark of humoral autoimmunity, leave their footprints in B-cell receptor repertoires. Collecting IgH sequences related to polyreactive (PR) ones from adaptive immune receptor repertoire (AIRR) datasets make the reconstruction and analysis of PR/AR B-cell lineages possible. We developed a computational approach, named ImmChainTracer, to extract members and to visualize clonal relationships of such B-cell lineages. Our approach was successfully applied on the IgH repertoires of patients suffering from monogenic hypomorphic RAG1 and 2 deficiency (pRD) or polygenic systemic lupus erythematosus (SLE) autoimmune diseases to identify relatives of AR IgH sequences and to track their fate in AIRRs. Signs of clonal expansion, affinity maturation and class-switching events in PR/AR and non-PR/AR B-cell lineages were revealed. An extension of our method towards B-cell expansion caused by any trigger (e.g., infection, vaccination or antibody development) may provide deeper insight into antigen specific B-lymphogenesis

    Chemical characterization of laboratory-generated tar ball particles

    Get PDF
    The chemical properties of laboratory-generated tar ball (Lab-TB) particles produced from dry distillate (wood tars) of three different wood species in the laboratory were investigated by analytical techniques that had never been used before for their characterization. The elemental compositions of laboratory-generated tar balls (Lab- TBs) from three tree species were very similar to one another and to those characteristic of atmospheric tar balls (TBs) collected from the savanna fire during the SAFARI 2000 sampling campaign. The O=C and H= C molar ratios of the generated Lab-TBs were at the upper limit characteristic of soot particles. The Fourier transform infrared spectroscopy (FTIR) spectra of the generated Lab-TBs were very similar to one another as well and also showed some similarity with those of atmospheric humic-like substances (HULIS). The FT-IR measurements indicated that Lab-TBs have a higher proportion of aromatic structure than HULIS and the oxygen atoms of Lab-TBs are mainly found in hydroxyl and keto functional groups. Whereas Raman activity was detected in the starting materials of the Lab-TBs (wood tars) in the range of 1000–1800 c

    Atmos. Chem. Phys.

    No full text

    J. Anal. Appl. Pyrolysis

    No full text

    Diel and seasonal variations in the chemical composition of biomass burning aerosol

    No full text
    Fine aerosol particles were collected separately during daytime and nighttime at a tropical pasture site in Rondônia, Brazil, during the burning and dry-to-wet transition period in 2002. Total carbon (TC) and water-soluble organic carbon (WSOC) were measured by evolved gas analysis (EGA). Based on the thermochemical properties of the fine aerosol, the relative amounts of the volatile and refractory compounds were estimated. It was found that the thermally refractory (possibly higher molecular weight) compounds dominated the TC composition. Their contribution to TC was higher in the daytime than in the nighttime samples. The relative share of WSOC also showed a statistically significant diel variation as did its refractory fraction. Anhydrosugars and phenolic acids were determined by GC-MS and their diel variation was studied. Based on the decrease of their relative concentrations between the biomass burning and transition periods and their distinctly different diel variations, we suggest that the phenolic acids may undergo chemical transformations in the aerosol phase, possibly towards more refractory compounds (humic-like substances, HULIS), as has been suggested previously. These conclusions are supported by the results of the thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry of the same filter samples
    corecore