119 research outputs found

    H<sub>2</sub>O and δD profiles remotely-sensed from ground in different spectral infrared regions

    Get PDF
    We present ground-based FTIR (Fourier Transform Infrared) water vapour analyses performed in four different spectral regions: 790–880, 1090–1330, 2650–3180, and 4560–4710 cm−1. All four regions allow the retrieval of lower, middle, and upper tropospheric water vapour amounts with a vertical resolution of about 3, 6, and 10 km, respectively. In addition the analyses at 1090–1330 and 2650–3180 cm−1 allow the retrieval of lower and middle/upper tropospheric δD values with vertical resolutions of 3 and 10 km, respectively. A theoretical and empirical error assessment – taking coincident Vaisala RS92 radiosonde measurements as a reference – suggests that the H2O data retrieved at high wavenumbers are slightly more precise than those retrieved at low wavenumbers. We deduce an H2O profile precision and accuracy of generally better than 20% except for the low wavenumber retrieval at 790–880 cm−1, where the assessed upper precision limit of middle/upper tropospheric H2O is 35%. The scatter between the H2O profiles produced by the four different retrievals is generally below 20% and the bias below 10%, except for the boundary layer, where it can reach 24%. These values well confirm the theoretical and empirical error assessment and are rather small compared to the huge tropospheric H2O variability of about one order of magnitude thereby demonstrating the large consistency between the different H2O profile retrievals. By comparing the two δD profile versions we deduce a precision of about 8 and 17‰ for the lower and middle/upper troposphere, respectively. However, at the same time we observe a systematic difference between the two retrievals of up to 40‰ in the middle/upper troposphere which is a large value compared to the typical tropospheric δD variability of only 80‰

    An FTIR spectrometer for remote measurements of atmospheric composition

    Get PDF
    The JPL IV interferometer, and infrared Michelson interferometer, was built specifically for recording high resolution solar absorption spectra from remote ground-based sites, aircraft and from stratospheric balloons. The instrument is double-passed, with one fixed and one moving corner reflector, allowing up to 200-cm of optical path difference (corresponding to an unapodised spectral resolution of 0.003/cm). The carriage which holds the moving reflector is driven by a flexible nut riding on a lead screw. This arrangement, together with the double-passed optical scheme, makes the instrument resistant to the effects of mechanical distortion and shock. The spectral range of the instrument is covered by two liquid nitrogen-cooled detectors: an InSb photodiode is used for the shorter wavelengths (1.85 to 5.5 microns, 1,800 to 5,500/cm) and a HgCdTe photoconductor for the range (5.5 to 15 microns, 650 to 1,800/cm). For a single spectrum of 0.01/cm resolution, which requires a scan time of 105 seconds, the signal/noise ratio is typically 800:1 over the entire wavelength range

    Infrared aircraft measurements of stratospheric composition over Antarctica during September 1987

    Get PDF
    The JPL Mark IV interferometer recorded high resolution, infared solar spectra from the NASA DC-8 aircraft during flights over Antarctica in September 1987. The atmospheric absorption features in these spectra were analyzed to determine the overburdens of O3, NO, NO2, HNO3, ClONO2, HCl, HF, CH4, N2O, CO, H2O and CFC-12. The spectra were obtained at latitudes which ranged between 64 degrees S and 86 degrees S, allowing the composition in the interior of the polar vortex to be compared with that at the edge. The latitude dependence observed for NO, HO2, HNO3, ClONO2, HCl and HF are summerized. The values at 30 deg S were observed on the ferry flight from New Zealand to Hawaii. The dashed lines connecting the two were interpolated across the region for which there are no measurements. The chemically perturbed region is seen to consist of a collar of high HNO3 and ClONO2 surrounding a core in which the overburdens of these and of HCl and NO2 are very low. Clear increases in the overburdens of HF and HNO3 were observed during the course of September in the vortex core. HCl and NO2 exhibited smaller, less significant increases. The overburdens of the tropospheric source gases, N2O, CH4, CF2Cl2, and H2O were observed to much smaller over Antarctica than at mid-latitudes. This, together with the fact that HF over Antarctica was more that double its mid-latitude value, suggests that downwelling has occurred

    Total column CO_2 measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles

    Get PDF
    An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO_2 and O_2 and other gases. Measured CO_2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS X_(CO_2) relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis

    Carbon dioxide column abundances at the Wisconsin Tall Tower site

    Get PDF
    We have developed an automated observatory for measuring atmospheric column abundances of CO_2 and O_2 using near-infrared spectra of the Sun obtained with a high spectral resolution Fourier Transform Spectrometer (FTS). This is the first dedicated laboratory in a new network of ground-based observatories named the Total Carbon Column Observing Network. This network will be used for carbon cycle studies and validation of spaceborne column measurements of greenhouse gases. The observatory was assembled in Pasadena, California, and then permanently deployed to northern Wisconsin during May 2004. It is located in the heavily forested Chequamegon National Forest at the WLEF Tall Tower site, 12 km east of Park Falls, Wisconsin. Under clear sky conditions, ∼0.1% measurement precision is demonstrated for the retrieved column CO_2 abundances. During the Intercontinental Chemical Transport Experiment–North America and CO_2 Boundary Layer Regional Airborne Experiment campaigns in summer 2004, the DC-8 and King Air aircraft recorded eight in situ CO_2 profiles over the WLEF site. Comparison of the integrated aircraft profiles and CO_2 column abundances shows a small bias (∼2%) but an excellent correlation

    Kinetics of HO_2 + HO_2 → H_2O_2 + O_2: Implications for Stratospheric H_2O_2

    Get PDF
    The reaction HO_2 + HO_2 → H_2O_2 + O_2(1) has been studied at 100 Torr and 222 K to 295 K. Experiments employing photolysis of Cl_2/CH_3OH/O_2/N_2 and F_2/H_2/O_2/N_2 gas mixtures to produce HO_2 confirmed that methanol enhanced the observed reaction rate. At 100 Torr, zero methanol, k_1 = (8.8 ± 0.9) 10^(−13) × exp[(210 ± 26)/T] cm^3 molecule^(−1) s^(−1) (2σ uncertainties), which agrees with current recommendations at 295 K but is nearly 2 times slower at 231 K. The general expression for k_1, which includes the dependence on bath gas density, is k_1 = (1.5 ± 0.2) × 10^(−12) × exp[(19 ± 31)/T] + 1.7 × 10^(−33) × [M] × exp[1000/T], where the second term is taken from the JPL00-3 recommendation. The revised rate largely accounts for a discrepancy between modeled and measured [H_2O_2] in the lower to middle stratosphere

    Near-infrared remote sensing of Los Angeles trace gas distributions from a mountaintop site

    Get PDF
    The Los Angeles basin is a significant anthropogenic source of major greenhouse gases (CO2 and CH4) and the pollutant CO, contributing significantly to regional and global climate change. We present a novel approach for monitoring the spatial and temporal distributions of greenhouse gases in the Los Angeles basin using a high-resolution spectroscopic remote sensing technique. A new Fourier transform spectrometer called CLARS-FTS has been deployed since May, 2010, at Jet Propulsion Laboratory (JPL)'s California Laboratory for Atmospheric Remote Sensing (CLARS) on Mt. Wilson, California, for automated long-term measurements of greenhouse gases. The instrument design and performance of CLARS-FTS are presented. From its mountaintop location at an altitude of 1673 m, the instrument points at a programmed sequence of ground target locations in the Los Angeles basin, recording spectra of reflected near-IR solar radiation. Column-averaged dry-air mole fractions of greenhouse gases (XGHG) including XCO2, XCH4, and XCO are retrieved several times per day for each target. Spectra from a local Spectralon® scattering plate are also recorded to determine background (free tropospheric) column abundances above the site. Comparisons between measurements from LA basin targets and the Spectralon® plate provide estimates of the boundary layer partial column abundances of the measured species. Algorithms are described for transforming the measured interferograms into spectra, and for deriving column abundances from the spectra along with estimates of the measurement precision and accuracy. The CLARS GHG measurements provide a means to infer relative, and possibly absolute, GHG emissions
    corecore