https://ntrs.nasa.gov/search.jsp?R=19890005179 2020-03-20T05:04:02+00:00Z

N89-14550 for surf

An FTIR Spectrometer for Remote Measurements of Atmospheric Composition

357 C.B. Farmer, P.W. Schaper, G.C. Toon, J.-F. Blavier, G. Mohler and D. Petterson, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California 91109

Abstract

The JPL Mark IV interferometer, an infrared Michelson interferometer, was built specifically for recording high resolution solar absorption spectra from remote ground-based sites, aircraft and from stratospheric balloons. The instrument is double-passed, with one fixed and one moving corner reflector, allowing up to 200-cm of optical path difference (corresponding to an unapodised spectral resolution of 0.003 cm⁻¹). The carriage which holds the moving reflector is driven by a flexible nut riding on a lead screw. This arrangement, together with the double-passed optical scheme, makes the instrument resistant to the effects of mechanical distortion and shock.

The spectral range of the instrument is covered by two liquid nitrogencooled detectors: an InSb photodiode is used for the shorter wavelengths $(1.8-5.5~\mu\text{m},~1,800-5,500~\text{cm}^{-1})$ and a HgCdTe photoconductor for the range $(5.5-15~\mu\text{m}~650-1,800~\text{cm}^{-1})$. For a single spectrum of 0.01 cm⁻¹ resolution, which requires a scan time of 105 seconds, the signal/noise ratio is typically 800:1 over the entire wavelength range.