300 research outputs found
A fast, low-memory, and stable algorithm for implementing multicomponent transport in direct numerical simulations
Implementing multicomponent diffusion models in reacting-flow simulations is
computationally expensive due to the challenges involved in calculating
diffusion coefficients. Instead, mixture-averaged diffusion treatments are
typically used to avoid these costs. However, to our knowledge, the accuracy
and appropriateness of the mixture-averaged diffusion models has not been
verified for three-dimensional turbulent premixed flames. In this study we
propose a fast,efficient, low-memory algorithm and use that to evaluate the
role of multicomponent mass diffusion in reacting-flow simulations. Direct
numerical simulation of these flames is performed by implementing the
Stefan-Maxwell equations in NGA. A semi-implicit algorithm decreases the
computational expense of inverting the full multicomponent ordinary diffusion
array while maintaining accuracy and fidelity. We first verify the method by
performing one-dimensional simulations of premixed hydrogen flames and compare
with matching cases in Cantera. We demonstrate the algorithm to be stable, and
its performance scales approximately with the number of species squared. Then,
as an initial study of multicomponent diffusion, we simulate premixed,
three-dimensional turbulent hydrogen flames, neglecting secondary Soret and
Dufour effects. Simulation conditions are carefully selected to match
previously published results and ensure valid comparison. Our results show that
using the mixture-averaged diffusion assumption leads to a 15% under-prediction
of the normalized turbulent flame speed for a premixed hydrogen-air flame. This
difference in the turbulent flame speed motivates further study into using the
mixture-averaged diffusion assumption for DNS of moderate-to-high Karlovitz
number flames.Comment: 36 pages, 14 figure
Toward model-based engineering for space embedded systems and software
International audienceEmbedded systems development suffers from difficulties to reach cost, delay and safety requirements. The continuous increase of system complexity requires a corresponding increase in the capability of design fault-free systems. Model-based engineering aims to make complexity management easier with the construction of a virtual representation of systems enabling early prediction of behaviour and performance. In this context, Space industry has specific needs to deal with remote systems that can not be maintained on ground. In such systems, fault management includes complex detection, localisation and recovery automatic procedures that can not be performed without confidence on safety. In this way, only simulation and formal proofs can support the validation of all the possible configurations. Thus, formal description of both functional and non-functional properties with temporal logic formulae is expected to analyse and to early predict system characteristics at execution. This paper is based on various studies and experiences that are carried out in space domain on the support provided by model-based engineering in terms of: • support to needs capture and requirements analysis, • support to design, • support to early verification and validation, • down to automatic generation of code
Proposed Vertical Expansion Tunnel
It is proposed that the adverse effects from secondary diaphragm rupture in an expansion tunnel may be reduced or eliminated by orienting the tunnel vertically, matching the test gas pressure and the accelerator gas pressure, and initially separating the test gas from the accelerator gas by density stratification. This proposed configuration is termed the vertical expansion tunnel. Two benefits are 1) the removal of the diaphragm particulates in the test gas after its rupture, and 2) the elimination of the wave system that is a result of a real secondary diaphragm having a finite mass and thickness. An inviscid perfect-gas analysis and quasi-one-dimensional Euler computations are performed to find the available effective reservoir conditions (pressure and mass specific enthalpy) and useful test time in a vertical expansion tunnel for comparison to a conventional expansion tunnel and a reflected-shock tunnel. The maximum effective reservoir conditions of the vertical expansion tunnel are higher than the reflected-shock tunnel but lower than the expansion tunnel. The useful test time in the vertical expansion tunnel is slightly longer than the expansion tunnel but shorter than the reflected-shock tunnel. If some sacrifice of the effective reservoir conditions can be made, the vertical expansion tunnel could be used in hypervelocity ground testing without the problems associated with secondary diaphragm rupture
Ignition and chemical kinetics of acrolein-oxygen-argon mixtures behind reflected shock waves
In order to address increasing greenhouse gas emissions, the future fossil fuel shortage and increasingly stringent pollutant emission regulations, a variety of biofuels are being progressively incorporated into conventional transportation fuels. Despite the beneficial impact of biofuels on most regulated pollutants, their combustion induces the increase of a variety of aldehydes that are being considered for specific regulations due to their high toxicity. One of the most hazardous aldehyde compounds is acrolein, C_2H_3CHO. Despite its high toxicity and increased formation during bioalcohol and biodiesel combustion, no experimental data are available for acrolein combustion. In the present study, we have investigated the ignition of acrolein–oxygen–argon mixtures behind reflected shock wave using three simultaneous emission diagnostics monitoring OH∗, CH∗ and CO_2∗. Experiments were performed over a range of conditions: Φ = 0.5–2; T_5 = 1178–1602 K; and P_5 = 173–416 kPa. A tentative detailed reaction model, which includes sub-mechanisms for the three measured excited species, was developed to describe the high-temperature chemical kinetics of acrolein oxidation. Reasonable agreement was found between the model prediction and experimental data
Model Driven Engineering and Dependability Analyses: The Topcased Approach
International audienceModel Driven Engineering approaches are widely promoted to overcome difficulties to design, validate and maintain large complex systems. They present interesting dependability characteristics especially in terms of prevention of design faults and validation of design correctness. However industrial needs, practices and applicable standards impose constraints on the dependability activities to perform and justify. Therefore it is necessary to analyze how a complete dependability and safety process can be integrated with model-driven approaches within a seamless global process: which dependability activities are naturally covered or facilitated by model-driven approaches, and which additional activities are needed with which support. This paper presents the results of a study aiming at the establishment of requirements to model-driven engineering methods and tools, to support dependability analyses
Integration of formal fault analysis in ASSERT: Case studies and lessons learnt
International audienceThe ASSERT European Integrated Project (Automated proof-based System and Software Engineering for Real-Time systems; EC FP6, IST-004033) has investigated, elaborated and experimented advanced methods based on the AltaRica language and support tool OCAS for architecture and fault approach propagation description analysis, and integrated in the complete ASSERT process. The paper describes lessons learnt from three case studies: safety critical spacecraft, autonomous deep exploration spacecraft, and civil aircraft
Multi-domain comparison of safety standards
International audienceThis paper presents an analysis of safety standards and their implementation in certification strategies from different domains such as aeronautics, automation, automotive, nuclear, railway and space. This work, performed in the context of the CG2E ("Club des Grandes Entreprises de l'Embarqué"), aims at identifying the main similarities and dissimilarities, for potential cross-domain harmonization. We strive to find the most comprehensive 'trans-sectorial' approach, within a large number of industrial domains. Exhibiting the 'true goals' of their numerous applicable standards, related to the safety of system and software, is a first important step towards harmonization, sharing common approaches, methods and tools whenever possible
- …