
HAL Id: hal-02270317
https://hal.archives-ouvertes.fr/hal-02270317

Submitted on 24 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of formal fault analysis in ASSERT: Case
studies and lessons learnt

P. Bieber, J Blanquart, G. Durrieu, D Lesens, J Lucotte, F. Tardy, M Turin,
C. Seguin, E. Conquet

To cite this version:
P. Bieber, J Blanquart, G. Durrieu, D Lesens, J Lucotte, et al.. Integration of formal fault analysis in
ASSERT: Case studies and lessons learnt. Embedded Real Time Software and Systems (ERTS2008),
Jan 2008, Toulouse, France. �hal-02270317�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/227322197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02270317
https://hal.archives-ouvertes.fr

 Page 1/9

Integration of formal fault analysis in ASSERT:
Case studies and lessons learnt

P.Bieber6, JP.Blanquart1, G.Durrieu6, D.Lesens2, J.Lucotte5, F.Tardy3, M.Turin4, C.Seguin6, E.Conquet7

1: Astrium Satellites, 31 rue des cosmonautes, F-31402 Toulouse (jean-paul.blanquart@astrium.eads.net)
2: Astrium Space Transportation, route de Verneuil, F-78133 Les Mureaux (david.lesens@astrium.eads.net)

3: Dassault Aviation, 78 quai Marcel Dassault, F-92552 Saint-Cloud, (frederic.tardy@dassault-aviation.fr)
4: GTI6, 33 avenue Kennedy, F-91300 Massy, (michelturin@gti6.com)

5: INSA Lyon, 8 rue de la physique, F-69621 Villeurbanne, (jocelyn.lucotte@insa-lyon.fr)
6: ONERA Centre de Toulouse, 2 av. E.Belin, F-31055 Toulouse (pierre.bieber; guy.durrieu; christel.seguin@cert.fr)

7: ESA, Keplerlaan 1, AG Noordwijk, NL-2200, (eric.conquet@esa.int)

Abstract: The ASSERT European Integrated Project
(Automated proof-based System and Software
Engineering for Real-Time systems; EC FP6, IST-
004033) has investigated, elaborated and
experimented advanced methods based on the
AltaRica language and support tool OCAS for
architecture and fault approach propagation
description analysis, and integrated in the complete
ASSERT process. The paper describes lessons
learnt from three case studies: safety critical
spacecraft, autonomous deep exploration
spacecraft, and civil aircraft.

Keywords: Dependability, Space, Formal Methods

1. Introduction

Dependability engineering is based on an
appropriate combination of fault prevention, removal,
tolerance and analysis techniques. The former three
ones received a lot of attention in advanced
engineering processes and methods. Conversely in
the industrial practice, fault analysis is still largely
based, with poor tool support, on tedious and error
prone intellectual investigation of possible fault
propagation paths. This is then used as input to
detailed analyses (such as fault trees or quantitative
dependability computation), generally with some tool
support, or simply documented, for instance in failure
modes, effects and criticality analysis reports.
The ASSERT European Integrated Project
(Automated proof-based System and Software
Engineering for Real-Time systems; EC FP6, IST-
004033) has investigated, elaborated and
experimented advanced methods based on the
AltaRica language and support tool OCAS for
architecture and fault approach propagation
description analysis, and integrated in the complete
ASSERT process.
The paper presents first the concepts studied when
performing an early fault propagation analysis of an
on board system. Then, it presents how the concept
and analysis can be supported by AltaRica models

and the associated tools. An illustration on the ATV
system is given on the next part. Finally, the paper
describes first lessons learnt from three case studies
(safety critical spacecraft, autonomous deep
exploration spacecraft, and civil aircraft). This
sample of real cases of critical embedded systems
enables to highlight a variety of architecture and
dependability requirements. Moreover, they address
different scenarios of use of fault propagation
models: specification of fault detection isolation and
recovery architectures, dependability assessment of
architectures, comparison of architectures.
This last part discusses first the benefits and
limitations of the AltaRica language and tools for
each targeted scenario. Then it deals with process
issues: clarification of the various dependability
modelling levels (from functional system view to
physical one); links with the other methods and tools
of the complete process (links with engineering and
validation models such as AADL or UML, and with
means to ensure and maintain consistency such as
model transformation techniques).

2. Fault propagation analysis for on board
systems

At system level, dependability analysis is certainly
one of the most difficult tasks required by customer
according to the criticality of the system. The
objectives are to identify the possible faults, their
effects at subsystem and system level, specify the
protection mechanisms, design a robust architecture
fault tolerant, design the fault detection isolation and
recovery (FDIR) mechanisms and implement them
correctly in the on-board software, define operations
with ground segment to cope with all identified failure
cases and validate them. According to the criticality
of the feared failure condition, the system shall be
tolerant to 1 or 2 faults. The proof of this requirement
is very difficult due to hidden common cause failure.
At development level the on-board FDIR function
and ground operations are always defined very late
in the development cycle, but they have often a large

 Page 2/9

impact on software development and are the source
of planning slippage and over-cost.
The trends are now to have vehicle more
autonomous, with automatic functions: aircraft
without manned control, spacecraft autonomous
from ground station during long periods, spacecraft
constellation, deep space mission without capability
of ground control due to the round trip delay,
launcher fully autonomous during the launch. These
new missions in front of dependability problem are a
real challenge which will need modern and efficient
tools to provide proofs at system engineering level
and reliable verification at implementation level.
Within the ASSERT project, solutions were
investigated with tools already proven for aeronautic
activity which requires a high level of safety including
certification. But the problem of space missions is
rather different: long mission time up to 15 years with
a very high reliability, advance architecture for
automated system with high safety during some
mission phases, multi-platform cooperation with high
autonomy.
Thus dependability requirements and on ground
system architectures will be different for aeronautic
and space domain. Nevertheless, early fault
propagation analysis will, in both cases, cope with
the set of concepts that is presented below.

2.1. Failure condition

In Aeronautic, it is defined the important concept of
Failure Condition (FC) which could apply to space
activity to analyse the dependability (reliability and
safety of a system).
The failure condition refers to a combination of
failures modes applied to functions of the system
under study. We considered the following generic
failure modes of functions: total loss, partial loss and
erroneous behaviour. The FC may also include
conditions that describe the current mode of the
system. The FC may be permanent or transient.
A FC has several attributes:
• SEVERITY classification, for safety the

categories are: Catastrophic, Hazardous, Major,
Minor and No Safety Effect.

• QUANTITATIVE OBJECTIVE is a failure rate
value that can be stated per mission hour, or for
a given mission phase. Typical values are 10-

9/hour for Catastrophic FC, 10-7/hour for
Hazardous. Other categories are dependent on
project, reliability objectives, etc.

• QUALITATIVE OBJECTIVE describes the
number N of individual faults which are
considered for a given FC: “No combination of
events with less than N individual faults shall

lead to FC” with N = 2 for Catastrophic FC, N=1
for Hazardous and Major FC.

2.2. Failure modes

We will then define the following failure types for
propagating failures in the system:
Fail loss: the function is lost; it does not deliver its
service, for electrical system its behaviour may be:
no power, no signal, inactive…; for data, its
behaviour may be: no answer, no valid data,
erroneous data but associated with health status not
OK.
Fail erroneous: the function is alive, but delivers an
incorrect service: data is erroneous but no
immediate mean permits to detect the failure or error
state. Software error will be in this category except if
an exception is raised with processing stop, in such
case we will use the fail_loss type. Fail_loss is
detected immediately, but Fail_erroneous can be
detected if a failure detector is implemented (e.g.
threshold detector, comparison with a prediction,
voter when at least 3 instances are provided…).
Failure detectors have false alarm rate and limited
coverage ratio: if failure is detected, fail erroneous
type is not propagated to other functions, either the
failure is corrected else the fail_loss type will replace
fail_erroneous type; if failure is not detected
fail_erroneous type is propagated; but if false alarm
is detected, the function is declared lost while it is
correct.
These kinds of failure modes are often identified
when analysing fault propagation in computer based
system and were more widely discussed in [1].
Fail permanent: the failure remains permanent if no
action is taken: the possible actions may be restart
power, reset system, or reconfigure; the actions are
part of on board FDIR or maintenance operations.
Fail transient: the failure occurs from time to time but
does not affect the behaviour of the system
permanently; for space electronics, EMC
susceptibility and SEU are the main cause of
transient failures. For software, it may be a real time
problem occurring with a low probability (overload,
resource conflict…). Fail transient will propagate
inside the system except if filtering mechanisms are
implemented (repetition, protection, masking…), but
if the failure affects remanent data, fail_transient will
propagate as fail_permanent.

2.3. Failure transition and failure rate
Failures are introduced in the system as events
which modify the state of the system. The natural
state transitions of any item are:

 Page 3/9

State = OK | -
fail_erroneous => State :=
Erroneous;
State = OK | - fail_loss =>
State := Lost;
State = Erroneous | -
fail_loss => State := Lost;

Figure 1: Failure transition

This latter transition is introduced in order to show
the possibility that an erroneous system be further
lost, but the reverse transition is impossible: a
system already lost cannot return alive without a
corrective action as recovery.
For each failure event, we will have to provide the
failure rate and the probability law (generally
exponential); in this example fail_erroneous has a
probability 1E-5 and fail_loss has a probability 1E-4.

2. 4. Failure analysis
The concept of FC can be used for safety analysis
(see aeronautic standard): each feared FC is
generally specified with a severity, a quantitative
objective and a qualitative objective. The analysis
will consist to search all failure cases which have the
consequence to raise the FC. This search may be
obtained by FMEA starting from the failure and going
to the effects, or by fault trees starting from the
feared FC and searching all failure cases. The
severity category of each FC will identify all functions
involved in each category, and may have impact on
architecture for partitioning software between
categories.
The concept of FC can be used for reliability
analysis: a system, sub-system or equipment is
specified with a reliability figure for a given time
period: the whole mission, or part of it. The FC will
be quantitatively evaluated taking into account failure
rates, and architecture redundancies.

3. AltaRica implementation of the fault
propagation analysis

AltaRica is a dependability language issued from
LaBri (Laboratoire Bordelais de Recherche en
Informatique) and industrial partners. AltaRica has
been conceived to formally specify the behavior of
critical systems in failure conditions and use these
dependability specifications with tools.
Several Dependability tools can process AltaRica
models: symbolic simulators, model-checkers, fault
tree generators, sequence generators, AltaRica
graphical modelers, etc. There are many of such

tools. Beyond them, CECILIA workshop covers most
of these functionalities through its modules like
OCAS and ARBOR.
In this section, we briefly introduce the features of
the language and of the tools that were used for
ASSERT purpose. The interested reader may find
more details in [2].

3.1 AltaRica models
An AltaRica model is a hierarchy of interconnected
“nodes”. Each node has typed interfaces (“flows”),
internal nominal or error “states” and a behaviour (a
constraint automata) that results from “assertions”
and “transitions” laws. The interface types usually
record the failure modes that can be propagated by
a flow. For instance, the node of the figure 2 has one
output 0 and two inputs I1 and I2 that can propagate
either correct or lost values as defined in section 2.
The assertions indicate the computation formulae of
output and local variables, which often consist in the
description of flows values from states possible
values. In the example of the figure 2, the assertion
states that the output flow O has a correct value
when the node status is correct and all its inputs are
correct. Else, the output is lost. The transitions
describe the node’s state changes under specific
conditions, which follow event occurrences. In the
example below, the loss event can trigger the
transition only if the function is not already lost.
node COMPUTATION_Function2
 flow
 O:COMPUTATION_FailureType:out;
 I1:COMPUTATION_FailureType:in;
 I2:COMPUTATION_FailureType:in;
 state
 Status:COMPUTATION_FailureType;
 event
 Loss,
 trans
 not(Status = lost) |- Loss ->
Status:= lost;
 assert
 O = case {
 ((Status = correct) and

(I1 = correct) and
(I2 = correct)) : correct,

 else lost
 };
 init
 Status:= correct;
 extern
 law (<event Loss>) = "exp 1e-4";

����.

Figure 2: Example of AltaRica node

By default, different event names depict independent
events (as in fault-trees). One can nevertheless
group events thank to the synchronisation feature.

��� �		�

����

�
��
�

�
��
�
�

��
�

 Page 4/9

Among other things, this feature enables the
modelling of common cause failures.

3.2 Analysis of AltaRica models
During ASSERT, we mainly used three functions
provided by OCAS: the interactive simulation, the
fault-tree generation and the sequence generation.
The simulation mode of OCAS tool enables the
injection of failures and then computes the resulting
effects. It permitted to debug the models and give a
graphical view of failure propagation in the system.
The fault tree and the sequence generations
implement top down investigations. Starting from a
FC, they extract respectively a tree or the set of
sequences of events length that lead to the FC. The
fault-tree generation is applicable only when the
event ordering does not impact the FC reachability.
The sequence generation is applicable in any case
and enable to investigate some temporal aspect of
failure propagation.

4. Illustration: ATV (Automated Transfer Vehicle)

4.1. ATV GNC architecture
The ATV is a spacecraft that is in charge of
transporting cargo for the International Space Station
(ISS).
The analysis described in this section is limited to
the Rendez-Vous phase when the ATV docks on the
ISS, and it addresses only GNC sub-system and
software. The Altarica approach could also deal with
interaction of the GNC sub-system with other
subsystems as power, thermal, propulsion,
docking…but the study is concentrated on software
behaviour in presence of hardware failures and
software errors.
The GNC architecture of ATV is described in figure
3. It is rather complex, it includes a pool of 3 fault
tolerance computers (FTC) in charge of the nominal
and survival GNC function running in the Flight
Application Software (FAS: 3 instances of the same
code in each computer) and a proximity flight safety
function (PFS) limited to Collision Avoidance
Manoeuver (CAM) triggered during the last Rendez-
vous phases in case of GNC failure. The Propulsion
Drive Electronics (PDE) are dual duplex (4
equipments), and a large number of redundant
sensors are used:

• Gyrometers : 4 equipments able to measure
angular speed along 2 axis

• Accelerometers : 3 equipments able to
measure each acceleration along 3 axis

• GPS : 2 equipments able to provide vehicle
position and speed

• Star tracker : 2 equipments able to provide
accurate vehicle attitude

• Videometer : 2 equipments able to provide
relative distance to the ISS

• Goniometer (RDV sensor) : 2 equipments
able to provide angular deviation during
rendez-vous

The FAS processes all these inputs data in the GNC
function and delivers the PDE commands. But in
order to insure the failure detection, it exists to other
independent functions :

• the Flight Control Monitoring (FCM) which
monitors the trajectory with videometers
and goniometers

• the Gobal Measurement System (GMS)
which insures the navigation update from
star trackers and GPS

The FTC is a triplex system with votes provided in
the FTC management layer (FML), if discrepancies
are detected between the 3 FAS instances, the
erroneous FTC is masked; in case of a second
failure, the FTC pool is disabled, and the PFS takes
control of GNC function to perform the CAM. A red
button is provided to the ISS crew to start the CAM.
The PFS is not completely independent of the
nominal GNC, because it uses the same gyrometers
but in coarse mode, with independent sun sensors
for attitude update. The PFS is architectured with 2
computers (MSU), the first is master the second is
slave, the master-slave switch will give control to the
second one if the first is detected failed and the CAM
continues. After completion of the CAM, the vehicle
is pointed toward sun and the control is returned to
the FTC which are restarted.
Communication between FTC, sensors and PDE is
insured via 4 MIL 1553 bus on which are allocated
the equipments. This communal resource will
introduce common mode failures between functions,
and allocation of equipments on the 1553 bus is not
trivial. One FTC computer will be the master of the
1553 bus with possible reallocation in case of failure
of this computer.

 Page 5/9

�

�

Figure 3: AltaRica model Top-level view of ATV architecture

�

 Page 6/9

4.2. ATV GNC Altarica model

The studied Altarica model is a simplification of this
ATV architecture, and may include errors, the failure
rates are not representative of the real ATV, it was
provided only for the purpose of evaluation.
The higher level functional view (described in figure
3) is represented with external interfaces (sensors
and commands); failure events are introduced for all
external interfaces and each internal function. The
links between functions are green in absence of
error, red in case of loss of the function and blue in
case of erroneous behaviour. Simulations can then
be conducted by “injecting” failure events on inputs
or functions.
For instance, we study failure modes related with the
GPS system used during proximity phase. GPS loss
is simple to detect via the GPS health status, and
this failure mode will not be analysed in detail. GPS
erroneous data is a possible failure mode to be
considered and it is not detected internally by GPS
receivers. It will be simulated by injecting the
fail_erroneous event on one GPS receiver instance
of the model. According to the model, the
discrepancy between both GPS data is detected (by
node valid_gps described in figure 4) and GPS
system is declared lost. Then either this failure is
blocked by GNC which will continue to control ATV
without GPS data, or the failure propagates through
GNC function (the output of GNC is equal to lost)
and function FCM using independent sensors will
detect the GPS failure and will invalidate all GNC
commands. In the second case, the GNC health
status (HS) is now incorrect and transmitted to PFS
to start the CAM manoeuvre.

�

Figure 4: View of the FAS application

Given a Failure Condition, OCAS sequence
generator or fault-tree generator are used to
compute the set of minimal scenarios of failure
events that lead to this FC. For instance, we looked
at the following FC of the ATV GNC sub-system:

• “Lost (resp. Erroneous) primary command ”
named PrimLoss (resp. PrimErr), This FC is
reached when the output of node valid_com
is equal to lost (resp. erroneous).

• “Lost (resp. Erroneous) primary and backup
command ” names Prim&BLoss (resp.
Prim&BErr). This FC is reached when the
output of node merge_com is equal to lost
(resp. erroneous).

Scenarios were computed in a few seconds by
OCAS. The following table summarizes the results
we have obtained.
�

Results Prim Prim&B Prim Prim&B
 Loss Loss Err Err

1 8 0 0 0
2 13 28 33 0
3 70 622 142 510
4 0 2756 235 3120

proba 8. 1e-5 2.8 1e-9 8.7 1e-9 2.3 1e-12
time 0.03 s 4.37 s 0.21 s 5.11 s

Table 1: ATV Dependability Assessment Results
�

The first column indicates the safety result type : 1
for the number of single failure leading to the failure
condition, 2 for double failures and so on, proba is
the probability of occurrence of the failure condition,
time is the amount of time needed by the tools to
compute the minimal scenarios leading to the failure
condition. The remaining columns provide the results
for the four FC considered.

Using this table, we can check that no single failure
leads to the Loss of primary and backup command
and no double failure leads to erroneous primary
and backup command. Thise model can also be
used in order to identify the segregation
requirements between the various functions, to
associate failure rate objectives with component
failure modes and to associate Development
Assurance Levels with software implemented
components.

The model is extended with a description of the
hardware architecture and of the allocation of
functional components onto this architecture. The
hardware architecture is described using altarica
nodes that model CPU, buses, ...

 Page 7/9

Figure 5: View of the hardware architecture

The allocation of functions on resources of the
hardware architecture is described by grouping
failure events of functions and resources. For each
resource, a common cause failure group is added
that simultaneously triggers the failure event of the
resource and the failure events of all the functions
supported by this resource. This model allows
assessing the impact of hardware failures on
functions and data flows in order to know whether
the hardware architecture contains sufficient
redundancy to support the functions, whether an
allocation breaks segregation principles, …

5. Lessons Learnt

5.1. Case-studies Lessons Learnt

During the last year of the ASSERT project, the
Altarica language and toolset was experimented on
several case-studies called Pilot Projects:

• Astrium Space Transportation ATV GNC
System

• Dassault Aviation Flight Control System
• Astrium Satellites Pleiades Spacecraft level

FDIR System,
• GTI6 studied a temporal redundancy

scheme proposed by CNES.

Pilot Projects felt that the Altarica language and
associated tools were simple to understand and use.
Onera organised for ASSERT industrial partners a
one-day tutorial session on model based safety
assessment with Altarica and associated tools. This
limited training seemed to be sufficient for starting
the dependability modelling and assessment
activities.

Dassault Aviation case-study showed that once a
model of a system under design is built it is easy to

perform safety assessment and comparisons of
various modifications of the initial design. Dassault
studied 5 variants of the Flight Control System.

Astrium Satellites would have liked to be able to
describe components that include some
parameterization in order to build more generic
descriptions of the systems. This is currently not
supported by the Altarica language.

The temporal redundancy case-study showed that it
was possible to model with Altarica transient failure
modes that are much more frequent in the Space
domain than permanent failures.

The interactive simulation tool is very interesting
both to assess the failure propagation in a functional
model and also to assess the impact of hardware
components failures at the functional level. Fault tree
and Sequence generation tools are efficient. But to
be applicable, fault tree generation requires the
model to be static (i.e. the chronology of failures has
no importance). It could be possible to control the
edition of Altarica nodes and models in order to be
sure to produce models that can be analysed with
the fault-tree generator.

Pilot projects also noticed that, in the space industry,
the generation of fault-trees or sequences that
combine a big number of failures is not necessarily
required to obtain dependability results. In such a
context, it might be more valuable to support the
generation of FMECA (Failure Modes Effect and
Criticality Assessment) tables that is a cumbersome
task in industrial projects. These tables detail the
effect at a component level and at the system level
of all single failures. The table also defines the
severity of the failures. Cecilia OCAS offers today a
rudimentary tool that generates FMECA tables from
an Altarica model. This tool is currently being
improved by Dassault Aviation in order to consider
its use on space industry projects.

��

5.2. Integration of failure propagation models into
model based development process

The decomposition of failure propagation models
into, on one hand, a functional model that is
independent of the underlying hardware and, on the
other hand, a hardware architecture and an
allocation model is consistent with one of the
principles of model-based design. One limitation of
the tested approach is that services offered by the
operating system or the middleware layer such as
communication, memory or time management are
not modelled. These services are particularly
important for Space domain applications that tries to

 Page 8/9

cope with transient failures. Onera has developed
approach that includes these services in the scope
of the models used to perform safety assessments
but, due to the lack of time, the approach could not
be tested on industrial case-studies.

A major concern raised by the Pilot Projects with
respect to Altarica is related with the effort involved
in building the failure propagation models and the
possible inconsistencies between Altarica models
and other models that are developed according to
ASSERT process or, more generally, a model-based
development process.

To limit the effort of building dependability models,
Onera proposed to develop libraries of Altarica
nodes that can be reused from one project to the
other. This approach works well for families of
systems that do not differ too much. But if a new
technology appears and new associated failure
modes have to be considered then the old library of
components can no longer be used.

To avoid possible inconsistencies with other models
developed in the context of ASSERT, Onera
investigated a tool that generates an Altarica model
from a model described in the AADL language [3].
The tool is based on model transformation
technique. It extracts from the AADL model, the
functional architecture, the hardware architecture
and the allocation. The property declarations in the
AADL model is used to associate an AADL process
with the name of an Altarica node in the existing
libraries, this node will be used to generate the
Altarica model of the functional architecture.

To be able to generate the behaviour of Altarica
nodes an alternative solution could consist into
translating AADL code written following the Error
Annex standard into Altarica. This seems feasible as
LAAS investigated a similar approach during the first
phase of the ASSERT project. In this case, the
Altarica code might be much more complex than the
one we have presented in this report.

Finally we would like to state that integration of
dependability models in a model-based process is
not limited to tools and languages interoperation.
More fundamentally, the integration should define
the role of the various kinds of analysis and their
relationships.

6. References

[1] J. McDermid, D. Pumfrey: “A Development of
Hazard Analysis to aid Software Design” in
Proceedings of COMPASS, 1994.

[2] A. Arnold., A. Griffault, G. Point, A. Rauzy: “The
AltaRica formalism for describing concurrent

systems.“ In: Fundamenta Informaticae p109-124,
2000

 [3] X. Dumas, C. Pagetti, L. Sagaspe, P. Bieber,
P. Dhaussy, Vers la Génération de Modèles de
Sûreté de Fonctionnement, to appear in
proceedings of Conférence sur les Architectures
Logicielles, Montréal, 2008

[4] A.E. Rugina AADL Dependability models

 Page 9/9

Figure 5: CeciliaTM OCAS integrated Dependability
process

�

�

