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Abstract: The ASSERT European Integrated Project 
(Automated proof-based System and Software 
Engineering for Real-Time systems; EC FP6, IST-
004033) has investigated, elaborated and 
experimented advanced methods based on the 
AltaRica language and support tool OCAS for 
architecture and fault approach propagation 
description analysis, and integrated in the complete 
ASSERT process. The paper describes lessons 
learnt from three case studies: safety critical 
spacecraft, autonomous deep exploration 
spacecraft, and civil aircraft. 
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1. Introduction 

Dependability engineering is based on an 
appropriate combination of fault prevention, removal, 
tolerance and analysis techniques. The former three 
ones received a lot of attention in advanced 
engineering processes and methods. Conversely in 
the industrial practice, fault analysis is still largely 
based, with poor tool support, on tedious and error 
prone intellectual investigation of possible fault 
propagation paths. This is then used as input to 
detailed analyses (such as fault trees or quantitative 
dependability computation), generally with some tool 
support, or simply documented, for instance in failure 
modes, effects and criticality analysis reports. 
The ASSERT European Integrated Project 
(Automated proof-based System and Software 
Engineering for Real-Time systems; EC FP6, IST-
004033) has investigated, elaborated and 
experimented advanced methods based on the 
AltaRica language and support tool OCAS for 
architecture and fault approach propagation 
description analysis, and integrated in the complete 
ASSERT process. 
The paper presents first the concepts studied when 
performing an early fault propagation analysis of an 
on board system. Then, it presents how the concept 
and analysis can be supported by AltaRica models 

and the associated tools. An illustration on the ATV 
system is given on the next part. Finally, the paper  
describes first lessons learnt from three case studies 
(safety critical spacecraft, autonomous deep 
exploration spacecraft, and civil aircraft). This 
sample of real cases of critical embedded systems 
enables to highlight a variety of architecture and 
dependability requirements. Moreover, they address 
different scenarios of use of fault propagation 
models: specification of fault detection isolation and 
recovery architectures, dependability assessment of 
architectures, comparison of architectures. 
This last part discusses first the benefits and 
limitations of the AltaRica language and tools for 
each targeted scenario. Then it deals with process 
issues: clarification of the various dependability 
modelling levels (from functional system view to 
physical one); links with the other methods and tools 
of the complete process (links with engineering and 
validation models such as AADL or UML, and with 
means to ensure and maintain consistency such as 
model transformation techniques). 

2. Fault propagation analysis for on board 
systems 

At system level, dependability analysis is certainly 
one of the most difficult tasks required by customer 
according to the criticality of the system. The 
objectives are to identify the possible faults, their 
effects at subsystem and system level, specify the 
protection mechanisms, design a robust architecture 
fault tolerant, design the fault detection isolation and 
recovery (FDIR) mechanisms and implement them 
correctly in the on-board software, define operations 
with ground segment to cope with all identified failure 
cases and validate them. According to the criticality 
of the feared failure condition, the system shall be 
tolerant to 1 or 2 faults. The proof of this requirement 
is very difficult due to hidden common cause failure. 
At development level the on-board FDIR function 
and ground operations are always defined very late 
in the development cycle, but they have often a large 
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impact on software development and are the source 
of planning slippage and over-cost. 
The trends are now to have vehicle more 
autonomous, with automatic functions: aircraft 
without manned control, spacecraft autonomous 
from ground station during long periods, spacecraft 
constellation, deep space mission without capability 
of ground control due to the round trip delay, 
launcher fully autonomous during the launch.  These 
new missions in front of dependability problem are a 
real challenge which will need modern and efficient 
tools to provide proofs at system engineering level 
and reliable verification at implementation level. 
Within the ASSERT project, solutions were 
investigated with tools already proven for aeronautic 
activity which requires a high level of safety including 
certification. But the problem of space missions is 
rather different: long mission time up to 15 years with 
a very high reliability, advance architecture for 
automated system with high safety during some 
mission phases, multi-platform cooperation with high 
autonomy. 
Thus dependability requirements and on ground 
system architectures will be different for aeronautic 
and space domain. Nevertheless, early fault 
propagation analysis will, in both cases, cope with 
the set of concepts that is presented below. 

 

2.1. Failure condition 

In Aeronautic, it is defined the important concept of 
Failure Condition (FC) which could apply to space 
activity to analyse the dependability (reliability and 
safety of a system). 
The failure condition refers to a combination of 
failures modes applied to functions of the system 
under study. We considered the following generic 
failure modes of functions: total loss, partial loss and 
erroneous behaviour. The FC may also include 
conditions that describe the current mode of the 
system. The FC may be permanent or transient. 
A  FC has several attributes: 
• SEVERITY classification, for safety the 

categories are: Catastrophic, Hazardous, Major, 
Minor and No Safety Effect. 

• QUANTITATIVE OBJECTIVE is a failure rate 
value that can be stated per mission hour, or for 
a given mission phase. Typical values are 10-

9/hour for Catastrophic FC, 10-7/hour for 
Hazardous. Other categories are dependent on 
project, reliability objectives, etc. 

• QUALITATIVE OBJECTIVE describes the 
number N of individual faults which are 
considered for a given FC: “No combination of 
events with less than N individual faults shall 

lead to FC” with N = 2 for Catastrophic FC, N=1 
for Hazardous and Major FC. 

 
2.2. Failure modes 

We will then define the following failure types for 
propagating failures in the system: 
Fail loss: the function is lost; it does not deliver its 
service, for electrical system its behaviour may be: 
no power, no signal, inactive…; for data, its 
behaviour may be:  no answer, no valid data, 
erroneous data but associated with health status not 
OK. 
Fail erroneous: the function is alive, but delivers an 
incorrect service: data is erroneous but no 
immediate mean permits to detect the failure or error 
state. Software error will be in this category except if 
an exception is raised with processing stop, in such 
case we will use the fail_loss type. Fail_loss is 
detected immediately, but Fail_erroneous can be 
detected if a failure detector is implemented (e.g. 
threshold detector, comparison with a prediction, 
voter when at least 3 instances are provided…). 
Failure detectors have false alarm rate and limited 
coverage ratio: if failure is detected, fail erroneous 
type is not propagated to other functions, either the 
failure is corrected else the fail_loss type will replace 
fail_erroneous type; if failure is not detected 
fail_erroneous type is propagated; but if false alarm 
is detected, the function is declared lost while it is 
correct. 
These kinds of failure modes are often identified 
when analysing fault propagation in computer based 
system and were more widely discussed in [1]. 
Fail permanent: the failure remains permanent if no 
action is taken: the possible actions may be restart 
power, reset system, or reconfigure; the actions are 
part of on board FDIR or maintenance operations. 
Fail transient: the failure occurs from time to time but 
does not affect the behaviour of the system 
permanently; for space electronics, EMC 
susceptibility and SEU are the main cause of 
transient failures. For software, it may be a real time 
problem occurring with a low probability (overload, 
resource conflict…). Fail transient will propagate 
inside the system except if filtering mechanisms are 
implemented (repetition, protection, masking…), but 
if the failure affects remanent data, fail_transient will 
propagate as fail_permanent. 
 
2.3. Failure transition and failure rate  
Failures are introduced in the system as events 
which modify the state of the system. The natural 
state transitions of any item are:  
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State = OK | - 
fail_erroneous => State := 
Erroneous; 
State = OK | - fail_loss => 
State := Lost; 
State = Erroneous | - 
fail_loss => State := Lost; 

Figure 1: Failure transition 

This latter transition is introduced in order to show 
the possibility that an erroneous system be further 
lost, but the reverse transition is impossible: a 
system already lost cannot return alive without a 
corrective action as recovery. 
For each failure event, we will have to provide the 
failure rate and the probability law (generally 
exponential); in this example fail_erroneous has a 
probability 1E-5 and fail_loss has a probability 1E-4. 
 
2. 4. Failure analysis  
The concept of FC can be used for safety analysis 
(see aeronautic standard): each feared FC is 
generally specified with a severity, a quantitative 
objective and a qualitative objective. The analysis 
will consist to search all failure cases which have the 
consequence to raise the FC. This search may be 
obtained by FMEA starting from the failure and going 
to the effects, or by fault trees starting from the 
feared FC and searching all failure cases. The 
severity category of each FC will identify all functions 
involved in each category, and may have impact on 
architecture for partitioning software between 
categories. 
The concept of FC can be used for reliability 
analysis: a system, sub-system or equipment is 
specified with a reliability figure for a given time 
period: the whole mission, or part of it. The FC will 
be quantitatively evaluated taking into account failure 
rates, and architecture redundancies. 
 

3. AltaRica implementation of the fault 
propagation analysis 

 
AltaRica is a dependability language issued from 
LaBri (Laboratoire Bordelais de Recherche en 
Informatique) and industrial partners. AltaRica has 
been conceived to formally specify the behavior of 
critical systems in failure conditions and use these 
dependability specifications with tools.  
Several Dependability tools can process AltaRica 
models: symbolic simulators, model-checkers, fault 
tree generators, sequence generators, AltaRica 
graphical modelers, etc. There are many of such 

tools. Beyond them, CECILIA workshop covers most 
of these functionalities through its modules like 
OCAS and ARBOR.  
In this section, we briefly introduce the features of 
the language and of the tools that were used for 
ASSERT purpose. The interested reader may find 
more details in [2]. 
 
3.1 AltaRica models 
An AltaRica model is a hierarchy of interconnected 
“nodes”. Each node has typed interfaces (“flows”), 
internal nominal or error “states” and a behaviour (a 
constraint automata) that results from “assertions” 
and “transitions” laws. The interface types usually 
record the failure modes that can be propagated by 
a flow. For instance, the node of the figure 2 has one 
output 0 and two inputs I1 and I2 that can propagate 
either correct or lost values as defined in section 2. 
The assertions indicate the computation formulae of 
output and local variables, which often consist in the 
description of flows values from states possible 
values. In the example of the figure 2, the assertion 
states that the output flow O has a correct value 
when the node status is correct and all its inputs are 
correct. Else, the output is lost. The transitions 
describe the node’s state changes under specific 
conditions, which follow event occurrences. In the 
example below, the loss event can trigger the 
transition only if the function is not already lost. 
node COMPUTATION_Function2 
  flow  
    O:COMPUTATION_FailureType:out; 
    I1:COMPUTATION_FailureType:in; 
    I2:COMPUTATION_FailureType:in; 
  state  
    Status:COMPUTATION_FailureType; 
  event  
    Loss, 
  trans  
    not(Status = lost) |- Loss -> 
Status:= lost; 
  assert  
    O = case {  
      ((Status = correct) and  

(I1 = correct) and  
(I2 = correct)) : correct, 

      else lost 
    }; 
  init  
    Status:= correct; 
  extern  
    law (<event Loss>) = "exp 1e-4"; 

����. 

Figure 2: Example of AltaRica node 

By default, different event names depict independent 
events (as in fault-trees). One can nevertheless 
group events thank to the synchronisation feature. 
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Among other things, this feature enables the 
modelling of  common cause failures. 
 
3.2 Analysis of AltaRica models 
During ASSERT, we mainly used three functions 
provided by OCAS: the interactive simulation, the 
fault-tree generation and the sequence generation. 
The simulation mode of OCAS tool enables the 
injection of failures and then computes the resulting 
effects. It permitted to debug the models and give a 
graphical view of failure propagation in the system. 
The fault tree and the sequence generations 
implement top down investigations. Starting from a 
FC, they extract respectively a tree or the set of 
sequences of events length that lead to the FC. The 
fault-tree generation is applicable only when the 
event ordering does not impact the FC reachability. 
The sequence generation is applicable in any case 
and enable to investigate some temporal aspect of 
failure propagation. 

4. Illustration: ATV (Automated Transfer Vehicle) 

4.1. ATV GNC architecture 
The ATV is a spacecraft that is in charge of 
transporting cargo for the International Space Station 
(ISS). 
The analysis described in this section is limited to 
the Rendez-Vous phase when the ATV docks on the 
ISS, and it addresses only GNC sub-system and 
software. The Altarica approach could also deal with  
interaction of the GNC sub-system with other 
subsystems as power, thermal, propulsion, 
docking…but the study is concentrated on software 
behaviour in presence of hardware failures and 
software errors. 
The GNC architecture of ATV is described in figure 
3. It is rather complex, it includes a pool of 3 fault 
tolerance computers (FTC) in charge of the nominal 
and survival GNC function running in the Flight 
Application Software (FAS: 3 instances of the same 
code in each computer) and a proximity flight safety 
function (PFS) limited to Collision Avoidance 
Manoeuver (CAM) triggered during the last Rendez-
vous phases in case of GNC failure. The Propulsion 
Drive Electronics (PDE) are dual duplex (4 
equipments), and a large number of redundant 
sensors are used: 

• Gyrometers : 4 equipments able to measure 
angular speed along 2 axis 

• Accelerometers : 3 equipments able to 
measure each acceleration along 3 axis 

• GPS : 2 equipments able to provide vehicle 
position and speed 

• Star tracker : 2 equipments able to provide 
accurate vehicle attitude  

• Videometer : 2 equipments able to provide 
relative distance to the ISS 

• Goniometer (RDV sensor) : 2 equipments 
able to provide angular deviation during 
rendez-vous 

The FAS processes all these inputs data in the GNC 
function and delivers the PDE commands. But in 
order to insure the failure detection, it exists to other 
independent functions : 

• the Flight Control Monitoring (FCM) which 
monitors the trajectory  with videometers 
and goniometers 

• the Gobal Measurement System (GMS) 
which insures the navigation update from 
star trackers and GPS 

The FTC is a triplex system with votes provided in 
the FTC management layer (FML), if discrepancies 
are detected between the 3 FAS instances, the 
erroneous FTC is masked; in case of a second 
failure, the FTC pool is disabled, and the PFS takes 
control of GNC function to perform the CAM. A red 
button is provided to the ISS crew to start the CAM. 
The PFS is not completely independent of  the 
nominal GNC, because it uses the same gyrometers 
but in coarse mode, with independent sun sensors 
for attitude update. The PFS is architectured with 2 
computers (MSU), the first is master the second is 
slave, the master-slave switch will give control to the 
second one if the first is detected failed and the CAM 
continues. After completion of the CAM, the vehicle 
is pointed toward sun and  the control is returned to 
the FTC which are restarted. 
Communication between FTC, sensors and PDE is 
insured via 4 MIL 1553 bus on which are allocated 
the equipments. This communal resource will 
introduce common mode failures between functions, 
and allocation of equipments on the 1553 bus is not 
trivial. One FTC computer will be the master of the 
1553 bus with possible reallocation in case of failure 
of this computer. 
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Figure 3: AltaRica model Top-level view of ATV architecture 

�
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4.2. ATV GNC Altarica model 
 
The studied Altarica model is a simplification of this 
ATV architecture, and may include errors, the failure 
rates are not representative of the real ATV, it was 
provided only for the purpose of evaluation. 
The higher level functional view (described in figure 
3) is represented with external interfaces (sensors 
and commands); failure events are introduced for all 
external interfaces and each internal function. The 
links between functions are green in absence of 
error, red in case of loss of the function and blue in 
case of erroneous behaviour. Simulations can then 
be conducted by “injecting” failure events on inputs 
or functions. 
For instance, we study failure modes related with the 
GPS  system used during proximity phase. GPS loss 
is simple to detect via the GPS health status, and 
this failure mode will not be analysed in detail. GPS 
erroneous data is a possible failure mode to be 
considered and it is not detected internally by GPS 
receivers. It will be simulated by injecting the 
fail_erroneous  event on one GPS receiver instance 
of the model. According to the model, the 
discrepancy between both GPS data is detected (by 
node valid_gps described in figure 4) and GPS 
system is declared lost.  Then either this failure is 
blocked by GNC which will continue to control ATV 
without GPS data, or the failure propagates through 
GNC function (the output of GNC is equal to lost) 
and function FCM using independent sensors will 
detect the GPS failure and will invalidate all GNC 
commands. In the second case, the GNC health 
status (HS) is now incorrect and transmitted to PFS 
to start the CAM manoeuvre. 
 
 

�

Figure 4: View of the FAS application 

 

Given a Failure Condition, OCAS sequence 
generator or fault-tree generator are used to 
compute the set of minimal scenarios of failure 
events that lead to this FC. For instance, we looked 
at the following FC of the ATV GNC sub-system: 
 

•  “Lost (resp. Erroneous) primary command ” 
named PrimLoss (resp. PrimErr), This FC  is 
reached when the output of node valid_com 
is equal to lost (resp. erroneous). 

•  “Lost (resp. Erroneous) primary and backup 
command ” names Prim&BLoss (resp. 
Prim&BErr). This FC  is reached when the 
output of node merge_com is equal to lost 
(resp. erroneous). 

 
Scenarios were computed in a few seconds by 
OCAS. The following table summarizes the results 
we have obtained.  
�

Results  Prim Prim&B Prim Prim&B 
  Loss Loss Err Err 

1 8 0 0 0 
2 13 28 33 0 
3 70 622 142 510 
4 0 2756 235 3120 

proba 8. 1e-5 2.8 1e-9 8.7 1e-9 2.3 1e-12 
time 0.03 s 4.37 s 0.21 s 5.11 s 

Table 1: ATV Dependability Assessment Results 
�

The first column indicates the safety result type : 1 
for the number of single failure leading to the failure 
condition, 2 for double failures and so on, proba is 
the probability of occurrence of the failure condition, 
time is the amount of time needed by the tools to 
compute the minimal scenarios leading to the failure 
condition. The remaining columns provide the results 
for the four FC considered. 
 
Using this table, we can check that no single failure 
leads to the Loss of primary and backup command 
and no double failure leads to erroneous  primary 
and backup command.  Thise model can also be 
used in order to identify the segregation 
requirements between the various functions, to 
associate failure rate objectives with component 
failure modes and to associate Development 
Assurance Levels with software implemented 
components. 
 
The model is extended with a description of the  
hardware architecture and of the allocation of 
functional components onto this architecture. The 
hardware architecture is described using altarica 
nodes that model CPU, buses, ... 
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Figure 5: View of the hardware architecture 

 
The allocation of functions on resources of the 
hardware architecture is described by grouping 
failure events of functions and resources.  For each 
resource, a common cause failure group is added 
that simultaneously triggers the failure event of the 
resource and the failure events of all the functions 
supported by this resource. This model allows 
assessing the impact of hardware failures on 
functions and data flows in order to know whether 
the hardware architecture contains sufficient 
redundancy to support the functions, whether an 
allocation breaks segregation principles, … 
 

5. Lessons Learnt 

5.1. Case-studies Lessons Learnt 

During the last year of the ASSERT project, the 
Altarica language and toolset was experimented on 
several case-studies called Pilot Projects:  

• Astrium Space Transportation ATV GNC 
System 

• Dassault Aviation Flight Control System  
• Astrium Satellites Pleiades Spacecraft level 

FDIR System, 
• GTI6 studied a temporal redundancy 

scheme proposed by CNES. 
 
Pilot Projects felt that the Altarica language and 
associated tools were simple to understand and use. 
Onera organised for ASSERT industrial partners a 
one-day tutorial session on model based safety 
assessment with Altarica and associated tools. This 
limited training seemed to be sufficient for starting 
the dependability modelling and assessment 
activities. 
 
Dassault Aviation case-study showed that once a 
model of a system under design is built it is easy to 

perform safety assessment and comparisons of 
various modifications of the initial design. Dassault 
studied 5 variants of the Flight Control System.  
 
Astrium Satellites would have liked to be able to 
describe components that include some 
parameterization in order to build more generic 
descriptions of the systems. This is currently not 
supported by the Altarica language. 
 
The temporal redundancy case-study showed that it 
was possible to model with Altarica transient failure 
modes that are much more frequent in the Space 
domain than permanent failures. 
 
The interactive simulation tool is very interesting 
both to assess the failure propagation in a functional 
model and also to assess the impact of hardware 
components failures at the functional level. Fault tree 
and Sequence generation tools are efficient. But to 
be applicable, fault tree generation requires the 
model to be static (i.e. the chronology of failures has 
no importance). It could be possible to control the 
edition of Altarica nodes and models in order to be 
sure to produce models that can be analysed with 
the fault-tree generator.  
 
Pilot projects also noticed that, in the space industry, 
the generation of fault-trees or sequences that 
combine a big number of failures is not necessarily 
required to obtain dependability results. In such a 
context, it might be more valuable to support the 
generation of FMECA (Failure Modes Effect and 
Criticality Assessment) tables that is a cumbersome 
task in industrial projects. These tables detail the 
effect at a component level and at the system level 
of all single failures. The table also defines the 
severity of the failures. Cecilia OCAS offers today a 
rudimentary tool that generates FMECA tables from 
an Altarica model. This tool is currently being 
improved by Dassault Aviation in order to consider 
its use on space industry projects. 
 
��

5.2. Integration of failure propagation models into 
model based development process  
 
 
The decomposition of failure propagation models 
into, on one hand, a functional model that is 
independent of the underlying hardware and, on the 
other hand, a hardware architecture and an 
allocation model is consistent with one of the 
principles of model-based design. One limitation of 
the tested approach is that services offered by the 
operating system or the middleware layer such as 
communication, memory or time management are 
not modelled.  These services are particularly 
important for Space domain applications that tries to 
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cope with transient failures. Onera has developed 
approach that includes these services in the scope 
of the models used to perform safety assessments 
but, due to the lack of time, the approach could not 
be tested on industrial case-studies. 
 
A major concern raised by the Pilot Projects with 
respect to Altarica is related with the effort involved 
in building the failure propagation models and the 
possible inconsistencies between Altarica models 
and other models that are developed according to 
ASSERT process or, more generally, a model-based 
development process. 
 
To limit the effort of building dependability models, 
Onera proposed to develop libraries of Altarica 
nodes that can be reused from one project to the 
other. This approach works well for families of 
systems that do not differ too much. But if a new 
technology appears and new associated failure 
modes have to be considered then the old library of 
components can no longer be used.   
 
To avoid possible inconsistencies with other models 
developed in the context of ASSERT, Onera 
investigated a tool that generates an Altarica model 
from a model described in the AADL language [3]. 
The tool is based on model transformation 
technique. It extracts from the AADL model, the 
functional architecture, the hardware architecture 
and the allocation. The property declarations in the 
AADL model is used to associate an AADL process 
with the name of an Altarica node in the existing 
libraries, this node will be used to generate the 
Altarica model of the functional architecture.  
 
To be able to generate the behaviour of Altarica 
nodes an alternative solution could consist into 
translating AADL code written following the Error 
Annex standard into Altarica. This seems feasible as 
LAAS investigated a similar approach during the first 
phase of the ASSERT project. In this case, the 
Altarica code might be much more complex than the 
one we have presented in this report. 

Finally we would like to state that integration of 
dependability models in a model-based process is 
not limited to tools and languages interoperation. 
More fundamentally, the integration should define 
the role of the various kinds of analysis and their 
relationships.  
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