7 research outputs found

    Online audio-visual information on oral cancer for Spanish-speaking laypersons. A cross-sectional study

    Get PDF
    Lack of knowledge and awareness of oral cancer seem to be the main causes of diagnostic delay. Online resources are often used by patients to obtain health/medical information. However, there are no reports on the quality and usefulness of oral cancer audio-visual resources in Spanish. The aims of this investigation were to disclose the type of information about oral cancer available, and whether it may be useful to shorten the patients? oral cancer appraisal time-interval. Cross-sectional study undertaken at three video-sharing sites on October, 13th 2019. Keywords: ?Cáncer oral?; ?cáncer de boca?. The first 100 results in each viewing list were retrieved by three reviewers. Demographical data was recorded, and interaction indexes, viewing rates, comprehensiveness, and usefulness were calculated for each video. The presence of non-scientifically supported information was also assessed. A descriptive analysis was undertaken, and relationships between variables were explored using the Spearman correlation test. A total of 127 videos were selected. They were produced mainly by mass-media (46.5%; n=59) and their length ranged from 0.28 to 105.38 minutes (median 4.15 minutes; IQR: 2.34-9.67). The most viewed video (10,599,765 views; visualization rate 726,508.9) scored 0 both in usefulness and comprehensiveness. The most useful video gathered 44,119 views (visualization rate 2.033.13). A highly significant positive correlation (0.643; p<0.001) could be observed between usefulness and comprehensiveness of the videos, together with negative correlations between the visualization rate and usefulness (-0.186; p<0.05), and visualization rate and comprehensiveness (-0.183; p<0.05). Online audio-visual material about oral cancer in Spanish is incomplete, of limited usefulness, and often includes non-scientifically supported information. Most of these resources are produced by mass media and healthcare professionals, with minor contributions from educational and healthcare institutions. Visualization rates negatively correlated with the usefulness and comprehensiveness of the contents in these digital objects

    Tracing the genetic impact of farmed turbot Scophthalmus maximus on wild populations

    Get PDF
    The impact of escapees from aquaculture is of general concern for the sustainability of natural resources. Turbot Scophthalmus maximus is a marine flatfish of great commercial value whose land-based aquaculture started approx. 40 yr ago; hence, a low impact of escapees is expected on wild populations. However, enhancement of wild stocks using farmed turbot has been carried out along the Northeast Atlantic coasts in the last decades. Recently, a broad panel of single nucleotide polymorphism (SNP) markers (755 SNPs; 1 SNP Mb−1) has been used to evaluate the genetic structure of turbot throughout its distribution range, constituting the baseline to evaluate the impact of farmed fish in the wild. Two distinct origins were identified for farmed turbot (F_ORI1 and F_ORI2; FST = 0.049), which differentiated from wild populations after 5 generations of selection (average FST = 0.059), and consistent evidence of adaptation to domestication was de - tected. A notable proportion of fish of farmed ancestry was detected in the wild (15.5%), mainly in the North Sea, where restocking activities have taken place, determining genetic introgression in wild populations. Conversely, effects of land-based aquaculture appear negligible. A simulation exercise supported panels of 40 and 80 SNPs to identify fishes of F_ORI1 and F_ORI2 ancestry in the wild, respectively. Application to empirical data showed an assignment success (wild/farmed ancestry) of approx. 95% in comparison with the full SNP dataset. The SNP tools will be useful to monitor turbot of farmed ancestry in the wild, which might represent a risk, considering the lower fitness of farmed individualsThe project was funded by the 7th Framework Programme for research (FP7) under ‘Knowledge-Based Bio-Economy — KBBE’, Theme 2: ‘Food, Agriculture and fisheries, and Biotechnologies’ Project identifier: FP7-KBBE-2012-6-singlestage Grant agreement no.: 311920 ‘The development of tools for tracing and evaluating the genetic impact of fish from aquaculture: AquaTrace’ and the Spanish Regional Government Xunta de Galicia GRC2014/010. Ciência sem Fronteiras/CAPES − Brazil supported the fellowship for the stay of F.D.P. at USCS

    A single genomic region involving a putative chromosome rearrangement in flat oyster (Ostrea edulis) is associated with differential host resilience to the parasite Bonamia ostreae

    Get PDF
    European flat oyster (Ostrea edulis) is an ecologically and economically important marine bivalve, that has been severely affected by the intracellular parasite Bonamia ostreae. In this study, a flat oyster SNP array (~14,000 SNPs) was used to validate previously reported outlier loci for divergent selection associated with B. ostreae exposure in the Northeast Atlantic Area. A total of 134 wild and hatchery individuals from the North Sea, collected in naïve (NV) and long-term affected (LTA) areas, were analysed. Genetic diversity and differentiation were related to the sampling origin (wild vs. hatchery) when using neutral markers, and to bonamiosis status (NV vs. LTA) when using outlier loci for divergent selection. Two genetic clusters appeared intermingled in all sampling locations when using outlier loci, and their frequency was associated with their bonamiosis status. When both clusters were compared, outlier data sets showed high genetic divergence (FST > 0.25) unlike neutral loci (FST not ≠ 0). Moreover, the cluster associated with LTA samples showed much higher genetic diversity and significant heterozygote excess with outlier loci, but not with neutral data. Most outliers mapped on chromosome 8 (OE-C8) of the flat oyster genome, supporting a main genomic region underlying resilience to bonamiosis. Furthermore, differentially expressed genes previously reported between NV and LTA strains showed higher mapping density on OE-C8. A range of relevant immune functions were specifically enriched among genes annotated on OE-C8, providing hypotheses for resilience mechanisms to an intracellular parasite. The results suggest that marker-assisted selection could be applied to breed resilient strains of O. edulis to bonamiosis, if lower parasite load and/or higher viability of the LTA genetic cluster following B. ostreae infection is demonstratedBiotechnology and Biological Sciences Research Council. Grant Numbers: BBS/E/D/20002172, BB/S004181/1. Ministry of Agriculture, Nature and Food safety. Grant Numbers: BO43-18, KB33-004S

    Signatures of selection for bonamiosis resistance in European flat oyster (Ostrea edulis): New genomic tools for breeding programs and management of natural resources

    Get PDF
    The European flat oyster (Ostrea edulis) is a highly appreciated mollusk with an important aquaculture production throughout the 20th century, in addition to playing an important role on coastal ecosystems. Overexploitation of natural beds, habitat degradation, introduction of non‐native species, and epidemic outbreaks have severely affected this important resource, particularly, the protozoan parasite Bonamia ostreae, which is the main concern affecting its production and conservation. In order to identify genomic regions and markers potentially associated with bonamiosis resistance, six oyster beds distributed throughout the European Atlantic coast were sampled. Three of them have been exposed to this parasite since the early 1980s and showed some degree of innate resistance (long‐term affected group, LTA), while the other three were free of B. ostreae at least until sampling date (naïve group, NV). A total of 14,065 SNPs were analyzed, including 37 markers from candidate genes and 14,028 from a medium‐density SNP array. Gene diversity was similar between LTA and NV groups suggesting no genetic erosion due to long‐term exposure to the parasite, and three population clusters were detected using the whole dataset. Tests for divergent selection between NV and LTA groups detected the presence of a very consistent set of 22 markers, located within a putative single genomic region, which suggests the presence of a major quantitative trait locus associated with B. ostreae resistance. Moreover, 324 outlier loci associated with factors other than bonamiosis were identified allowing fully discrimination of all the oyster beds. A practical tool which included the 84 highest discriminative markers for tracing O. edulis populations was developed and tested with empirical data. Results reported herein could assist the production of stocks with improved resistance to bonamiosis and facilitate the management of oyster beds for recovery production and ecosystem services provided by this species.This work was funded by the OYSTERECOVER project (FP7‐SME‐2008‐2‐243583) from the European Community's Seventh Framework Programme, the European Regional Development's funds (FEDER), and Xunta de Galicia local government (GRC2014/010, R2014/046). The development and provision of the medium‐density SNP array for oysters was supported by Biotechnology and Biological Sciences Research Council (BBSRC), and National Environment Research Council (NERC) grants (BB/M026140/1, NE/P010695/1), in addition to BBSRC Institute Strategic Program Grants (BBS/E/D/20002172 and BBS/E/D/30002275)S

    Low impact of different SNP panels from two building-loci pipelines on RAD-Seq population genomic metrics: case study on five diverse aquatic species

    Get PDF
    Background: The irruption of Next-generation sequencing (NGS) and restriction site-associated DNA sequencing (RAD-seq) in the last decade has led to the identification of thousands of molecular markers and their genotyping for refined genomic screening. This approach has been especially useful for non-model organisms with limited genomic resources. Many building-loci pipelines have been developed to obtain robust single nucleotide polymorphism (SNPs) genotyping datasets using a de novo RAD-seq approach, i.e. without reference genomes. Here, the performances of two building-loci pipelines, STACKS 2 and Meyer’s 2b-RAD v2.1 pipeline, were compared using a diverse set of aquatic species representing different genomic and/or population structure scenarios. Two bivalve species (Manila clam and common edible cockle) and three fish species (brown trout, silver catfish and small-spotted catshark) were studied. Four SNP panels were evaluated in each species to test both different building-loci pipelines and criteria for SNP selection. Furthermore, for Manila clam and brown trout, a reference genome approach was used as control. Results: Despite different outcomes were observed between pipelines and species with the diverse SNP calling and filtering steps tested, no remarkable differences were found on genetic diversity and differentiation within species with the SNP panels obtained with a de novo approach. The main differences were found in brown trout between the de novo and reference genome approaches. Genotyped vs missing data mismatches were the main genotyping difference detected between the two building-loci pipelines or between the de novo and reference genome comparisons. Conclusions: Tested building-loci pipelines for selection of SNP panels seem to have low influence on population genetics inference across the diverse case-study scenarios here studied. However, preliminary trials with different bioinformatic pipelines are suggested to evaluate their influence on population parameters according with the specific goals of each studyThe work undertaken in this project was funded by Xunta de Galicia Autonomous Government (GRC2014/010), Interreg Atlantic Area (Cockles project, EAPA_458/2016) and Girona University (MPCUdG2016/060) projects. Adrián Casanova was a Xunta de Galicia fellowship (ED481A-2017/091)S

    A chromosome-level genome assembly enables the identification of the follicule stimulating hormone receptor as the master sex-determining gene in the flatfish Solea senegalensis

    Get PDF
    Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 single nucleotide polymorphism variants in the follicle stimulating hormone receptor (fshr) consistent with an XX/XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. The fshr gene displayed differential expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 nonsynonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testisEuropean Union's Horizon 2020 research and innovation programme under grant agreement (AQUA-FAANG). Grant Number: 81792. Junta de Andalucía-FEDER Grant. Grant Number: P20-00938. Spanish Ministry of Economy and Competitiveness, FEDER Grants. Grant Numbers: RTI2018-096847-B-C21, RTI2018-096847-B-C22S

    Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly

    Get PDF
    Highly dense linkage maps enable positioning thousands of landmarks useful for anchoring the whole genome and for analysing genome properties. Turbot is the most important cultured flatfish worldwide and breeding programs in the fifth generation of selection are targeted to improve growth rate, obtain disease resistant broodstock and understand sex determination to control sex ratio. Using a Restriction-site Associated DNA approach, we genotyped 18,214 single nucleotide polymorphism in 1,268 turbot individuals from 31 full-sibling families. Individual linkage maps were combined to obtain a male, female and species consensus maps. The turbot consensus map contained 11,845 markers distributed across 22 linkage groups representing a total normalised length of 3,753.9 cM. The turbot genome was anchored to this map, and scaffolds representing 96% of the assembly were ordered and oriented to obtain the expected 22 megascaffolds according to its karyotype. Recombination rate was lower in males, especially around centromeres, and pairwise comparison of 44 individual maps suggested chromosome polymorphism at specific genomic regions. Genome comparison across flatfish provided new evidence on karyotype reorganisations occurring across the evolution of this fish groupThis study has been supported by the FISHBOOST project (ref. 613611) from the European Community's Seventh Framework Programme (FP7/2007-2013) and by Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia local government (ref. GRC2014/010)S
    corecore