246 research outputs found
Twenty-three unsolved problems in hydrology (UPH) – a community perspective
This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come
Flood trends in Europe: are changes in small and big floods different?
Abstract. Recent studies have revealed evidence of trends in the median or mean flood discharge in Europe over the last 5 decades, with clear and coherent
regional patterns. The aim of this study is to assess whether trends in flood discharges also occurred for larger return periods, accounting for
the effect of catchment scale. We analyse 2370 flood discharge records, selected from a newly available pan-European flood database, with record
length of at least 40 years over the period 1960–2010 and with contributing catchment area ranging from 5 to 100 000 km2. To estimate
regional flood trends, we use a non-stationary regional flood frequency approach consisting of a regional Gumbel distribution, whose median and
growth factor can vary in time with different strengths for different catchment sizes. A Bayesian Markov chain Monte Carlo (MCMC) approach is used
for parameter estimation. We quantify regional trends (and the related sample uncertainties), for floods of selected return periods and for
selected catchment areas, across Europe and for three regions where coherent flood trends have been identified in previous studies. Results show
that in northwestern Europe the trends in flood magnitude are generally positive. In small catchments (up to 100 km2), the 100-year flood
increases more than the median flood, while the opposite is observed in medium and large catchments, where even some negative trends appear,
especially in northwestern France. In southern Europe flood trends are generally negative. The 100-year flood decreases less than the median flood,
and, in the small catchments, the median flood decreases less compared to the large catchments. In eastern Europe the regional trends are negative
and do not depend on the return period, but catchment area plays a substantial role: the larger the catchment, the more negative the trend
Corrigendum to "Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response" published in Hydrol. Earth Syst. Sci., 15, 3767–3783, 2011
No abstract available
Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response
Abstract. This paper describes a set of spatial rainfall statistics (termed "spatial moments of catchment rainfall") quantifying the dependence existing between spatial rainfall organisation, basin morphology and runoff response. These statistics describe the spatial rainfall organisation in terms of concentration and dispersion statistics as a function of the distance measured along the flow routing coordinate. The introduction of these statistics permits derivation of a simple relationship for the quantification of catchment-scale storm velocity. The concept of the catchment-scale storm velocity takes into account the role of relative catchment orientation and morphology with respect to storm motion and kinematics. The paper illustrates the derivation of the statistics from an analytical framework recently proposed in literature and explains the conceptual meaning of the statistics by applying them to five extreme flash floods occurred in various European regions in the period 2002–2007. High resolution radar rainfall fields and a distributed hydrologic model are employed to examine how effective are these statistics in describing the degree of spatial rainfall organisation which is important for runoff modelling. This is obtained by quantifying the effects of neglecting the spatial rainfall variability on flood modelling, with a focus on runoff timing. The size of the study catchments ranges between 36 to 982 km2. The analysis reported here shows that the spatial moments of catchment rainfall can be effectively employed to isolate and describe the features of rainfall spatial organization which have significant impact on runoff simulation. These statistics provide useful information on what space-time scales rainfall has to be monitored, given certain catchment and flood characteristics, and what are the effects of space-time aggregation on flood response modeling
Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene
Globally, many different kinds of water resources management issues call for policy- and infrastructure-based responses. Yet responsible decision-making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal - to century-long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water
and other changing, coupled environmental subsystems.
These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle – a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges from the perspectives of hydrologic science research. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior
of the coupled systems. Three research directions supportthe development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management.
Fully realizing the potential of this approach will ultimately require detailed integration of social science and physical science understanding of water systems, and is a priority for the developing field of sociohydrology
Editorial: Toward 50 years of Water Resources Research
The first issue of 'Water Resources Research' (WRR) was published in March 1965 and, therefore, the year 2015 will present the exciting opportunity to celebrate the 50th anniversary of the journal. Naturally, this milestone will be seen as an occasion to look back on 50 years of research activity. The history of WRR provides a very interesting perspective on the development of hydrology and the legacy of the worldwide water resources community
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
While conflict-and-cooperation phenomena in transboundary basins have been widely studied, much less work has been devoted to representing the process interactions in a quantitative way. This paper identifies the main factors in the riparian countries' willingness to cooperate in the Eastern Nile River basin, involving Ethiopia, Sudan, and Egypt, from 1983 to 2016. We propose a quantitative model of the willingness to cooperate at the national and river basin scales. Our results suggest that relative political stability and foreign direct investment can explain Ethiopia's decreasing willingness to cooperate between 2009 and 2016. Further, we show that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. While the proposed model has some limitations regarding model assumptions and parameters, it does provide a quantitative representation of the evolution of cooperation pathways among the riparian countries, which can be used to explore the effects of changes in future dam operation and other management decisions on the emergence of conflict and cooperation in the basin
Uncertainty contributions to low-flow projections in Austria
The main objective of the paper is to understand the
contributions to the uncertainty in low-flow projections resulting from
hydrological model uncertainty and climate projection uncertainty. Model
uncertainty is quantified by different parameterisations of a conceptual
semi-distributed hydrologic model (TUWmodel) using 11 objective functions in
three different decades (1976–1986, 1987–1997, 1998–2008), which allows for disentangling the effect of the objective function-related uncertainty and temporal stability of model parameters. Climate projection uncertainty is
quantified by four future climate scenarios (ECHAM5-A1B, A2, B1 and
HADCM3-A1B) using a delta change approach. The approach is tested for 262
basins in Austria.
The results indicate that the seasonality of the low-flow regime is an
important factor affecting the performance of model calibration in the
reference period and the uncertainty of Q95 low-flow projections in the
future period. In Austria, the range of simulated Q95 in the reference
period is larger in basins with a summer low-flow regime than in basins with
a winter low-flow regime. The accuracy of simulated Q95 may result in a
range of up to 60 % depending on the decade used for calibration.
The low-flow projections of Q95 show an increase of low flows in the
Alps, typically in the range of 10–30 % and a decrease in the
south-eastern part of Austria mostly in the range −5 to −20 % for the
climate change projected for the future period 2021–2050, relative the reference
period 1978–2007. The change in seasonality varies between scenarios, but
there is a tendency for earlier low flows in the northern Alps and later low
flows in eastern Austria. The total uncertainty of Q95 projections is
the largest in basins with a winter low-flow regime and, in some basins the
range of Q95 projections exceeds 60 %. In basins with summer low flows, the total uncertainty is mostly less than 20 %. The ANOVA
assessment of the relative contribution of the three main variance components
(i.e. climate scenario, decade used for model calibration and calibration
variant representing different objective function) to the low-flow projection
uncertainty shows that in basins with summer low flows climate scenarios
contribute more than 75 % to the total projection uncertainty. In basins
with a winter low-flow regime, the median contribution of climate scenario,
decade and objective function is 29, 13 and 13 %,
respectively. The implications of the uncertainties identified in this paper
for water resource management are discussed
- …