159 research outputs found

    Impact of Galaxy Clusters on UHECR propagation

    Full text link
    Galaxy clusters are the universe's largest objects in the universe kept together by gravity. Most of their baryonic content is made of a magnetized diffuse plasma. We investigate the impact of such magnetized environment on ultra-high-energy-cosmic-ray (UHECR) propagation. The intracluster medium is described according to the self-similar assumption, in which the gas density and pressure profiles are fully determined by the cluster mass and redshift. The magnetic field is scaled to the thermal components of the intracluster medium under different assumptions. We model the propagation of UHECRs in the intracluster medium using a modified version of the Monte Carlo code {\it SimProp}, where hadronic processes and diffusion in the turbulent magnetic field are implemented. We provide a universal parametrization that approximates the UHECR fluxes escaping from the environment as a function of the most relevant quantities, such as the mass of the cluster, the position of the source with respect to the center of the cluster and the nature of the accelerated particles. We show that galaxy clusters are an opaque environment especially for UHECR nuclei. The role of the most massive nearby clusters in the context of the emerging UHECR astronomy is finally discussed.Comment: 12 pages, 6 figures, resived by Ap

    Observational constraints on cosmic-ray escape from ultra-high energy accelerators

    Get PDF
    The energy spectrum and mass composition of ultra-high energy cosmic rays inferred at the Pierre Auger Observatory are used to derive a benchmark scenario for the emission mechanisms at play in extragalactic accelerators as well as for their energetics and for the abundances of elements in their environments. Assuming a distribution of sources following the density of stellar mass, the gradual increase of the cosmic ray mass number observed on Earth from ≃2 EeV up to the highest energies is shown to call for nuclei accelerated up to an energy proportional to their electric charge and emitted with a hard spectral index. In addition, the inferred flux of protons down to ≃0.6 EeV is shown to require for this population a spectral index significantly softer than that of heavier nuclei. This is consistent with in-source interactions that shape the energy production rate of injected charged nuclei differently from that of the secondary neutrons escaping from the confinement zone. Together with the inferred abundances of nuclei, these results provide constraints on the radiation levels in the source environments. Within this scenario, an additional component that falls off steeply with increasing energy up to the ankle feature is necessary to make up the all-particle flux in the sub-ankle energy range

    Observational constraints on cosmic-ray escape from ultra-high energy accelerators

    Get PDF
    The energy spectrum and mass composition of ultra-high energy cosmic rays inferred at the Pierre Auger Observatory are used to derive a benchmark scenario for the emission mechanisms at play in extragalactic accelerators as well as for their energetics and for the abundances of elements in their environments. Assuming a distribution of sources following the density of stellar mass, the gradual increase of the cosmic ray mass number observed on Earth from ≃2\:EeV up to the highest energies is shown to call for nuclei accelerated up to an energy proportional to their electric charge and emitted with a hard spectral index. In addition, the inferred flux of protons down to ≃0.6\:EeV is shown to require for this population a spectral index significantly softer than that of heavier nuclei. This is consistent with in-source interactions that shape the energy production rate of injected charged nuclei differently from that of the secondary neutrons escaping from the confinement zone. Together with the inferred abundances of nuclei, these results provide constraints on the radiation levels in the source environments. Within this scenario, an additional component that falls off steeply with increasing energy up to the ankle feature is necessary to make up the all-particle flux in the sub-ankle energy range

    Observational Constraints on Cosmic-Ray Escape from Ultrahigh-energy Accelerators

    Get PDF
    Interactions of ultra-high energy cosmic rays (UHECRs) accelerated in specific astrophysical environments have been shown to shape the energy production rate of nuclei differently from that of the secondary neutrons escaping from the confinement zone. Here, we aim at testing a generic scenario of in-source interactions through phenomenological modeling of the flux and composition of UHECRs. We fit a model in which nucleons and nuclei follow different particle energy distributions to the all-particle energy spectrum and proton spectrum below the ankle energy and distributions of maximum shower depths above this energy, as inferred at the Pierre Auger Observatory. We obtain that the data can be reproduced using a spatial distribution of sources that follows the density of extragalactic matter on both local and large scales, providing hence a realistic set of constraints for the emission mechanisms in cosmic accelerators, for their energetics, and for the abundances of elements at escape from their environments. While the quasi monoelemental increase of the cosmic-ray mass number observed on Earth from ≃2 EeV up to the highest energies calls for nuclei accelerated with a hard spectral index, the inferred flux of protons down to ≃0.6 EeV is shown to require for this population a spectral index significantly softer than that generally obtained up to now. We demonstrate that modeling UHECR data across the ankle substantiates the conjecture of in-source interactions in a robust statistical framework, although pushing the mechanism to the extreme

    Open Questions in Cosmic-Ray Research at Ultrahigh Energies

    Get PDF
    International audienceWe review open questions and prospects for progress in ultrahigh-energy cosmicray (UHECR) research, based on a series of discussions that took place during the “The High-Energy Universe: Gamma-Ray, Neutrino, and Cosmic-ray Astronomy” MIAPP workshop in 2018.Specifically, we overview open questions on the origin of the bulk of UHECRs, the UHECR mass composition, the origin of the end of the cosmic-ray spectrum, the transition from Galactic to extragalactic cosmic-rays, the effect of magnetic fields on thetrajectories of UHECRs, anisotropy expectations for specific astrophysical scenarios, hadronicinteractions, and prospects for discovering neutral particles as well as new physics at ultrahighenergies. We also briefly overview upcoming and proposed UHECR experiments and discusstheir projected science reach

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations
    corecore