23 research outputs found

    Differences in Strength & Power profiles between Road and Time Trial cyclists

    Get PDF
    Introduction Within the scientific literature there is little evidence available to provide practitioners with information on strength and power profiles of cyclists, resulting in a limited understanding of neuromuscular factors related to cycling performance. Information on the legs’ elastic energy utilisation, force-velocity and length-tension curves can inform training programs and aid in talent identification. Other sports where such information is more widely available have already successfully implemented this within preparation programmes (e.g. McBride et al., 1999). Methods A total of 44 cyclists were recruited for this project, of which 15 classified in a Novice category by having no racing experience at all (age 35.5 ± 11.4 yrs; height 177.4 ± 6.5 cm; mass 77.4 ± 9.3 kg; FTP 3.28 ± 0.47 W/kg), 14 in the Road racing category as they competed for at least the past year at British Cycling Category 2 level or higher and no experience in Time-Trial (TT) races (age 35.9 ± 12.7 yrs; height 179.1 ± 6.5 cm; mass 76.6 ± 9.0 kg; FTP 3.88 ± 0.49 W/kg), and 15 in the TT category as they considered TT racing as their main competitive aim, rode in dedicated TT positions and had recently produced a 10 or 25 mile personal best of 1) for all groups. This dominance was significantly less prominent in the TT group for flexion conditions (1.35 ± 0.18) compared to Road (1.56 ± 0.22; p = 0.031) and Novice (1.53 ± 0.19; p = 0.004) groups. Joint flexion torques showed non-significant trends; they were slightly higher in the knee and lower for the hip (1.43 & 2.08 Nm/kg respectively) in TT athletes compared to Road (1.35 & 2.14 Nm/kg) and Novices (1.36 & 2.22 Nm/kg) (p = 0.429 & 0.189). No differences were found for the angle at which peak torque occurred. The velocity effect on torque production was comparable between the groups. It decreased from its peak at 30 °/s, to 82 ± 11 % of that when tested at 270 °/s for knee flexion and to 61 ± 9 % for knee extension. Hip torque reduced to 66 ± 10 % and 79 ± 10 % for flexion and extension respectively, when tested at 210 °/s compared to 30 °/s condition. Discussion The CMJ data show that cyclists – both novice and competitive – perform poorly on vertical jumping (29 ± 6 cm) compared to strength trained (48.2 ± 2.8 cm) and even untrained individuals (33.7 ± 2.3 cm) (McBride et al., 1999). This is in line with previous research on endurance type athletes showing long-distance runners to perform inferiorly on jump tasks compared to an untrained population (27.8 ± 4.3 cm vs 37.3 ± 3.1 cm; Kubo et al., 2000). In contrast to the findings by Kubo et al. (2000), the tested competitive cyclists showed lower SJ/CMJ ratios compared to the untrained controls indicating a relatively large utilisation of elastic energy storage compared to muscular power in jump performance. Based on the dynamometry testing, it seems most plausible to suggest that the reduced hip flexion capacity in TT riders results from these muscles being disused during cycling due to the extreme hip flexion angles common in their riding positions. It could be suggested that an attempt is made to compensate for this loss in hip flexion capacity through increased knee flexors’ strength. An increased knee flexor torque in TT riders could also indicate a mechanically more effective pedalling technique on the bike, as previous literature has linked hamstring activity with increases in Index of Force Effectiveness on the bike (Bini et al., 2013). Greater separation between tested groups might have been masked due to variation in preferred bike setup within the groups, TT riders also training in road setups and novice cyclists having undergone minor adaptations through recreational cycling activities. Based on these results, it seems appropriate to advise strength training to be tailored to the type of competition a cyclist is aiming to perform on. TT riders should focus on knee flexor strength, while road cyclists could benefit from a more balanced approach between hip and knee strength. Currently ongoing research is investigating how these strength characteristics relate to determinants of cycling performance in order to further help optimising training protocols and talent identification strategies. References Bini RR, Hume P, Croft J, Kilding A. (2013) J Sci Cycl, 2(1), 11-24. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. (2000). EJAP, 81(3), 181-187. McBride JM, Triplett-McBride T, Davie H, Newton RU. (1999). J Biom, 32(10), 1021-1026. Cuk I, Markovic M, Nedeljkovic A, Ugarkovic D, Kukolj M, Jaric S. (2014). EJAP, 114(8), 1703-1714

    Mechanical and neural function of triceps surae in elite racewalking

    Get PDF
    Racewalking is a unique event combining mechanical elements of walking with speeds associated with running. It is currently unclear how racewalking technique impacts upon lower limb muscle-tendon function, despite the relevance of this to muscle economy and overall performance. The present study examined triceps surae neuromechanics in 11 internationally competitive racewalkers (age 25±11 years) walking and running on a treadmill at speeds between 4.5 - 13.8 km/h whilst triceps surae fascicle lengths, electromyography and kinematic data were recorded. Cumulative muscle activity required to traverse a unit distance (CMAPD) was calculated for each muscle. Medial gastrocnemius (MG) and soleus fascicle lengths/velocities were determined using an automated tracking algorithm, and muscle-tendon unit lengths were determined. Running was associated with net shortening of muscle fascicles during stance, combined with substantial lengthening of the muscle-tendon unit, implying energy storage in the Achilles tendon. When the same participants racewalked at the same speed, the fascicles shortened (soleus) or lengthened (MG), coinciding with rapid shortening followed by a relatively small increase in muscle tendon length during stance. Consequently, compared with running at the same speed, racewalking decreased the energy-saving role of the Achilles tendon. Moreover, CMAPD was generally highest in racewalking, implying that in individual muscles, the energy cost of racewalking was higher than running. Together these results suggest that racewalking is neurally and mechanically costly relative to running at a given speed. As racewalking events are typically between 10 and 50 km, neuromechanical inefficiencies that occur with each stride likely result in substantial energetic penalties

    The biomechanics of maintaining effective force application across cycling positions

    Get PDF
    Cyclists are known to change their cycling position to reduce aerodynamic drag. Research has shown that this compromises their physical capacity to perform, but there is considerable inter-individual variability present. Proposed training specificity effects by cycling position do not explain all of the observations in the literature, so a search for other influencing parameters is warranted and might help practitioners to further optimise cycling position. This study captured full-body kinematics and 2D crank forces in 19 Time-Trial (TT) and 36 Road trained cyclists. Data in preferred and standardised cycling positions were systematically evaluated and showed that, amongst other kinematic differences, TT cyclists prefer a more forwardly positioned hip joint over Road cyclists. Despite their different setup, no effects in mechanical effectiveness were seen between the groups when tested in their preferred position. Across the standardised positions, the full cohort showed lower mechanical effectiveness when lowering trunk angle. However, significant group by position interactions showed this effect to be less extreme for the TT group. Kinematic data revealed that an increased pelvic tilt resulted in increased hip flexion and induced a more dorsiflexed ankle angle. In addition, linear hip position acutely responded to positional changes by moving forwards when the trunk angle was lowered. A more forwards hip position is thus associated with maintaining a better mechanical effectiveness in aerodynamic cycling positions. This suggests that there is potential to mitigate the effect of negative crank forces in aerodynamic positions by acutely adjusting the saddle placement to facilitate linear hip movement

    Commonly reported isokinetic parameters do not reveal long-term strength deficits of the Triceps surae complex following operative treatment of Achilles tendon rupture

    Get PDF
    Isokinetic strength assessments are common outcome measures following operatively treated Achilles tendon (AT) ruptures. However, there is a lack of clarity on whether commonly reported outcome measures (such as peak joint moment) are sufficient to describe the extent of long-term functional deficits following AT rupture and repair. The present study conducted a comprehensive isokinetic evaluation of the Triceps surae complex in 12 participants who previously underwent AT rupture and repair. Testing occurred 4.4 (±2.6) years following surgery, and consisted of maximal isokinetic strength assessments of the plantarflexors at two angular velocities (30 and 60 °∙s-1) with the knee in flexed and straight positions. Differences between injured and non-injured limbs were tested through discrete and statistical parametric mapping analysis. Average joint moment showed significant main effects between injured and non-injured limbs, but common isokinetic parameters such as peak moment and angle of peak moment did not. The normalised moment curves showed a significant main effect of limb, angular velocity and knee joint position on joint moment throughout different portions of the range of motion. Temporal analysis revealed a significantly greater ability of the non-injured limb to sustain plantarflexor moments across a range of testing conditions. Participants who had undergone operative treatment of AT ruptures did not display inter-limb differences in discrete isokinetic strength outcomes that are often used in the literature. Instead, temporal analyses were required to highlight the reduced capacity of the injured limb to generate end-range joint moments and to sustain higher levels of joint moment for longer periods

    Morphological and functional outcomes of operatively treated Achilles tendon ruptures

    Get PDF
    Objectives: Achilles tendon rupture leads to functional impairments and these may be underpinned by morphological changes in the muscle-tendon unit. Functional performance of the injured limb will be impaired regardless of time since surgery and these impairments occur alongside changes in muscle-tendon morphology. Methods: Following operative treatment of Achilles tendon rupture and short term immobilisation, 12 patients completed a battery of tests during a single visit to the laboratory (performed an average of 4.4 ± 2.6 years post-surgery). Patients completed the Achilles’ tendon rupture score (ATRS), tests of ankle and hip range of motion (ROM) and ultrasound measurements of muscle-tendon architecture. Data on isokinetic (30 o/s, 60 o/s) plantar flexion strength, jumping performance and walking-running were also collected on the same visit. Percentage deficits were expressed relative to the non-injured limb and determined for statistical significance (p < 0.05). Relationships between outcomes measures and time since surgery were tested using Pearson’s correlation coefficients (p < 0.05). Results: The repaired limb showed a shorter muscle fascicle length (12.1-19.6%), increased fascicle pennation (18.0±22.14%) and reduced muscle thickness (9.1-20.1%) in the gastrocnemius and/or soleus along with greater tendon cross-sectional area (46.7±34.47%). Functionally, the repaired limb displayed lower countermovement jump height (-12.6±15.68%) and longer drop jump contact times (5.5±5.7%). Also, the repaired limb showed reduced hip internal-external ROM (6.3±8.2%) but no differences existed between limbs for plantar flexion ROM and strength or gait characteristics. Good ATRS outcomes were reported (mean: 87.9±16.2, range: 43-100) which related to time since surgery (r=0.79) but individual ATRS items did not correlate with corresponding objective measures. Conclusion: Plantar flexor atrophy following surgically treated Achilles tendon rupture is partially compensated for by remodelling of the fascicles however, impairments may still persist many years into the postoperative period although these may be more pronounced in high-velocity activities

    The association between hip-shoulder separation angles and technique characteristics in world-class high jumpers

    Get PDF
    Hip-shoulder separation (H-Ssep) has been widely researched in many sporting activities (e.g., golf) to provide information on the contribution of torso rotation to performance and injury. Although it is necessary for high jumpers to generate significant long-axis rotation to successfully clear the bar, limited information exists on H-Ssep for high jump athletes. As such, this study aimed to a) characterize the H-Ssep of world-class high jump athletes during competition, b) determine if differences exist between male and female athletes and c) to examine the relationship between H-Ssep and the biomechanical parameters used to describe high jump technique. Twenty-nine world-class high jumpers (17 males, 12 females) were recorded (120-200 Hz) during the 2017 and 2018 World Athletics Championship finals. H-Ssep was quantified at touchdown (TD) and take-off (TO) following manual digitizing (SIMI motion) and a number of other common biomechanical parameters were computed. The observed levels of H-Ssep at TD (−46 ± 12o) and TO (16 ± 11o) were in line with those reported previously for other sports. The magnitude of H-Ssep varied between individuals and showed significant associations with other approach and take-off characteristics. Significant differences in H-Ssep were not evident between male and female athletes despite significant differences in other performance- and technique-related parameters. These findings highlight the divergent take-off characteristics of world-class performers and their reliance on hip-shoulder interactions when generating long axis rotation. Coaches should be mindful of the mechanical and physical consequences of H-Ssep when developing technical models, conditioning interventions and coaching strategies

    Descriptions and definitions for the rugby league tackle.

    Get PDF
    Introduction Research within Rugby league (RL) tackle investigations using video analysis has often used two sources of variables. The exception being King et al (2010) who described the characteristics of the RL tackle event such as number of tacklers and tackle height of the first tackler. However, the majority of investigations have either adopted technical variables from rugby union (RU) tackle variables (Sperenza et al., 2017) or technical criteria from coaching cues (Gabbett, 2008). In doing so, content validity and relevance to RL could be questioned (O’Donoghue, 2014). The aim of this study was to adopt a 5 stage process to determine tackle variables which are valid and reliable for RL research. Method A 5 stage process was undertaken based upon recommendations by O’Donoghue (2014). STAGE 1 involved a synthesis of literature and examined phases of the tackle, variables describing the tackle descriptions of these variables research. A draft variable list was then developed before the start of STAGE 2. To achieve content validity and relevancy, STAGE 2 formed an expert group of practitioners to critique the previously formed draft variable list and develop new phases, variables and descriptors. STAGE 3 refined the variable list based upon the practitioner consultation. STAGE 4 established an expert group agreement in the refined variable list. Finally, STAGE 5 tested intra and inter-reliability of the list using Kappa statistics (McHugh, 2012). Results The agreed variable list comprised of 6 phases including defensive start point, pre-contact, initial contact, post-contact and play the ball phases. Within the phases 66 variables were determined. The intra- and inter-reliability testing resulted in at least moderate agreement (>0.7) (McHugh, 2012) of all phases. Discussion Due to possessing both strong relevance to an RL tackle and demonstrating good levels of reliability, researchers can be confident that the variables within the list are valid for research purposes (O’Donoghue, 2014). In addition, the rigorous 5 stage process of validating the content of the variable list should be used when determining different variables within different sports and actions for research purposes. In doing so, researchers can be confident that they are valid in use and thus can be used consistently for research purposes. Furthermore, the findings show that although there are similarities between a RU and RL tackle, clear differences exist and therefore justifies the need for specific RL variables during tackle research

    Combining sport and conventional military training provides superior improvements in physical test performance

    Get PDF
    Training for both sporting and military performance is common practice within army trainee populations, although it is currently unknown what effect this combination of training methods may have on the physical attributes required for overall physical preparedness. This study examined the effects of sport-specific training on general fitness in a professional military population. Four hundred and twenty-three Greek male army cadets completed a 12-week training regimen involving standard physical training (callisthenics, strength and endurance running exercises) and either general military training (GMT) or sport military training (SMT). A series of physical tests took place before and after the training period: a mile run, pull-ups, 50 m swim and an obstacle course run. Both the GMT and SMT groups showed significant (p < 0.001) improvements in all physical tests. However, the SMT group produced significantly greater improvements in all four tests (pull-ups [p < 0.001], 50 m swim [p < 0.05], obstacle course [p < 0.01] and mile run [p < 0.01]) compared to the GMT group. Furthermore, different types of SMT (e.g. rock climbing and track sprinting) achieved greater improvements (p < 0.001–0.01) in certain physical tests when compared to other forms of SMT (e.g. Pankration, Fencing). These results indicate that cadets undertaking concurrent participation in general and sport military training are overall better prepared for physical performance than their counterparts who undertake only general military training. Military conditioning per sonnel should be aware of the positive interplay between general and sports specific training in forming a preparation strategy designed for physical performance

    Combining sport and conventional military training provides superior improvements in physical test performance

    Get PDF
    Training for both sporting and military performance is common practice within army trainee populations, although it is currently unknown what effect this combination of training methods may have on the physical attributes required for overall physical preparedness. This study examined the effects of sport-specific training on general fitness in a professional military population. Four hundred and twenty-three Greek male army cadets completed a 12-week training regimen involving standard physical training (callisthenics, strength and endurance running exercises) and either general military training (GMT) or sport military training (SMT). A series of physical tests took place before and after the training period: a mile run, pull-ups, 50 m swim and an obstacle course run. Both the GMT and SMT groups showed significant (p < 0.001) improvements in all physical tests. However, the SMT group produced significantly greater improvements in all four tests (pull-ups [p < 0.001], 50 m swim [p < 0.05], obstacle course [p < 0.01] and mile run [p < 0.01]) compared to the GMT group. Furthermore, different types of SMT (e.g. rock climbing and track sprinting) achieved greater improvements (p < 0.001–0.01) in certain physical tests when compared to other forms of SMT (e.g. Pankration, Fencing). These results indicate that cadets undertaking concurrent participation in general and sport military training are overall better prepared for physical performance than their counterparts who undertake only general military training. Military conditioning personnel should be aware of the positive interplay between general and sports specific training in forming a preparation strategy designed for physical performance

    Analysis of lower limb internal kinetics and electromyography in elite race walking.

    Get PDF
    The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles
    corecore