6,963 research outputs found
Proprioceptive perception of phase variability
Previous work has established that judgments of relative phase variability of 2 visually presented oscillators covary with mean relative phase. Ninety degrees is judged to be more variable than 0° or 180°, independently of the actual level of phase variability. Judged levels of variability also increase at 180°. This pattern of judgments matches the pattern of movement coordination results. Here, participants judged the phase variability of their own finger movements, which they generated by actively tracking a manipulandum moving at 0°, 90°, or 180°, and with 1 of 4 levels of Phase Variability. Judgments covaried as an inverted U-shaped function of mean relative phase. With an increase in frequency, 180° was judged more variable whereas 0° was not. Higher frequency also reduced discrimination of the levels of Phase Variability. This matching of the proprioceptive and visual results, and of both to movement results, supports the hypothesized role of online perception in the coupling of limb movements. Differences in the 2 cases are discussed as due primarily to the different sensitivities of the systems to the information
GA-tuning of nonlinear observers for sensorless control of automotive power steering IPMSMs
The paper considers two observer-based rotor position estimation schemes for sensorless control of interior permanent magnet synchronous motors (IPMSMs) for use in future automotive power steering systems. Specifically, emphasis is given to techniques based on feedback-linearisation followed by classical Luenberger observer design, and direct design of non-linear observers. Genetic algorithms (GAs), using the principles of evolution, natural selection and genetic mutation, are introduced to address difficulties in selecting correction gains for the observers, since no analytical tuning mechanisms yet exist. Experimental measurements from an automotive power steering test-facility are included, to demonstrate the enhanced performance attributes offered by tuning the proposed observer schemes, online, in this manner
Battery health determination by subspace parameter estimation and sliding mode control for an all-electric Personal Rapid Transit vehicle â the ULTra
The paper describes a real-time adaptive battery modelling methodology for use in an all electric personal rapid transit (PRT) vehicle. Through use of a sliding-mode observer and online subspace parameter estimation, the voltages associated with monitoring the state of charge (SoC) of the battery system are shown to be accurately estimated, even with erroneous initial conditions in both the model and parameters. In this way, problems such as self- discharge during storage of the cells and SoC drift (as usually incurred by coulomb-counting methods due to overcharging or ambient temperature fluctuations) are overcome. Moreover, through online monitoring of the degradation of the estimated parameters, battery ageing (State of Health) can be monitored and, in the case of safety- critical systems, cell failure may be predicted in time to avoid inconvenience to passenger networks. Due to the adaptive nature of the proposed methodology, this system can be implemented over a wide range of operating environments, applications and battery topologies, by adjustment of the underlying state-space model
State-variable modelling of CLL resonant converters
The paper presents the derivation and application of state-variable models to high-order topologies of resonant converters. In particular, a 3rd order CLL resonant circuit is considered with bridge rectification and both a capacitive output filter (voltage output), and an LC output filter (current output). The state-variable model accuracy is verified against component-based simulation packages (Spice) and practical measurements, and it is shown that the resulting models facilitate rapid analysis compared to their integration-based counterparts (Spice, Saber), without the loss of accuracy normally associated with fundamental mode approximation (FMA) techniques. Moreover, unlike FMA, the models correctly predict the resonant peaks associated with harmonic excitation of the tank resonance. Subsequently, it is shown that excitation of the resonant tank by odd harmonics of the input voltage can be utilised to provide overcurrent protection in the event of an output short-circuit. Further, through judicious control of operating frequency, it is shown that 'inductive' zero voltage switching (ZVS) can still be obtained, facilitating reductions in gate-drive switching losses, thereby improving efficiency and thermal management of the supply under fault conditions. Although the results are ultimately generic to other converter counterparts, measured results from two prototype 36 V input, 11-14.4V output, 3rd - order CLL converters are included to practically demonstrate the attributes of the proposed analysis and control schemes
A H2 PEM fuel cell and high energy dense battery hybrid energy source for an urban electric vehicle
Electric vehicles are set to play a prominent role in addressing the energy and environmental impact of an increasing road transport population by offering a more energy efficient and less polluting drive-train alternative to conventional internal combustion engine (ICE) vehicles. Given the energy (and hence range) and performance limitations of electro-chemical battery storage systems, hybrid systems combining energy and power dense storage technologies have been proposed for vehicle applications. The paper discusses the application of a hydrogen fuel cell as a range extender for an urban electric vehicle for which the primary energy source is provided by a high energy dense battery. A review of fuel cell systems and automotive drive-train application issues are discussed, together with an overview of the battery technology. The prototype fuel cell and battery component simulation models are presented and their performance as a combined energy/power source assessed for typical urban and sub-urban driving scenario
Integrated multilevel converter and battery management
A cascaded H-bridge multilevel converter is proposed as a BLDC drive incorporating real-time battery management. Intelligent H-bridges are used to monitor battery cells whilst simultaneously increasing their performance by reducing the variation between cells and controlling their discharge profiles
Acting With Integrity Across The Worldâ? What Do Multinationals Say About Labour Standards?
This paper is concerned with global labour governance and with the position taken by UK based multinational corporations with regard to labour standards in the management of their supply chains, both in the UK and internationally. Organisations may have multiple and varied reasons for their public statements on corporate behaviour, we ask what the largest and most reputable of UK organisations pledge in their public statements about the ways in which they manage across international and corporate boundaries. We address the following questions. What are the claimed objectives for MNCâs in considering management across international boundaries, including management of their supply chains? How do they frame those objectives in public documentation? This paper reports on the first phase of our work, based on documentary research. We have reviewed the annual reports of 20 UK plcâs â multinationals with extensive overseas supply chains and considerable purchasing power and influence. Power asymmetries are inherent in the relations between MNEs and suppliers or sub-contractors and we found that there is little evidence that corporate positions are implemented throughout the relevant supply chains. We found an absence of uniformity in approach (although a high proportion of our sample publically express nothing, or little, on the subject of labour standards). There is no strong evidence to show that fair trading standards in commercial relations with suppliers or contractors lead to clear labour standards for those employed in supply chain companies or with sub-contractors
SAW torque transducers for disturbance rejection and tracking control of multi-inertia servo-drive systems
The paper proposes a resonance ratio control (RRC) technique for the coordinated motion control of multi-inertia mechanical systems, based on the measurement of shaft torque via a SAW-based torque sensor. Furthermore, a new controller structure, RRC plus disturbance feedback is proposed, which enables the controller to be designed to independently satisfy tracking and regulation performance. A tuning method for the RRC structure is given based on the ITAE index, normalized as a function of the mechanical parameters enabling a direct performance comparison between a basic proportional and integral (PI) controller. The use of a reduced-order state observer is presented to provide a dynamic estimate of the load-side disturbance torque for a multi-inertia mechanical system, with an appraisal of the composite closed-loop dynamics. It is shown that the integrated formulation of the tuning criteria enables lower bandwidth observers to be implemented with a corresponding reduction in noise and computational load. The control structures are experimentally validated via a purpose designed test facility and demonstrate significant improvement in dynamic tracking performance, whilst additionally rejecting periodic load side disturbances, a feature previously unrealisable except by other, high-gain control schemes that impose small stability margins
Novel battery model of an all-electric personal rapid transit vehicle to determine state-of-health through subspace parameter estimation and a Kalman Estimator
Abstract--The paper describes a real-time adaptive
battery model for use in an all-electric Personal Rapid
Transit vehicle. Whilst traditionally, circuit-based models
for lead-acid batteries centre on the well-known Randlesâ
model, here the Randlesâ model is mapped to an equivalent
circuit, demonstrating improved modelling capabilities and
more accurate estimates of circuit parameters when used in
Subspace parameter estimation techniques. Combined with
Kalman Estimator algorithms, these techniques are
demonstrated to correctly identify and converge on voltages
associated with the battery State-of-Charge, overcoming
problems such as SoC drift (incurred by coulomb-counting
methods due to over-charging or ambient temperature
fluctuations).
Online monitoring of the degradation of these estimated
parameters allows battery ageing (State-of-Health) to be
assessed and, in safety-critical systems, cell failure may be
predicted in time to avoid inconvenience to passenger
networks.
Due to the adaptive nature of the proposed methodology,
this system can be implemented over a wide range of
operating environments, applications and battery
topologies
- âŠ