1,638 research outputs found
Efectos de la fecha de siembra sobre el rendimiento y calidad comercial del maíz dulce (Zea Mays L., var. saccharata körn)
El efecto de la fecha de siembra sobre la producción y calidad del cultivo de maíz dulce en el norte de la provincia de Buenos Aires no ha sido estudiado y su conocimiento resulta de suma importancia para la planificación y obtención de resultados óptimos y viabilidad comercial para los productores de dicha zona. En base a esta problemática se estudió el efecto de tres fechas de siembra: 28 de octubre, 9 de noviembre y 5 de diciembre 2009 (fecha 1, 2 y 3, respectivamente) sobre el rendimiento y calidad comercial de Maíz Dulce (Zea Mays L., var. saccharata körn). La hipótesis principal que guió este trabajo fue que el atraso de la fecha de siembra reduciría el tamaño y peso de la espiga de maíz dulce afectando sus parámetros comerciales. Para poner a prueba esta hipótesis, se realizó un ensayo a campo en la localidad de Capilla del Señor, provincia de Buenos Aires. En las tres fechas mencionadas se sembró el híbrido Cahill (P) de un ciclo en fecha de siembra óptima de 75 días. El manejo de los cultivos respondió a un manejo convencional de la zona. Durante el ciclo del cultivo se llevaron a cabo determinaciones densidad y área foliar por planta. El momento de la cosecha se determinó por el método de apreciación visual del grano lechoso. Se tomaron muestras de espigas para la determinación de rendimiento y calidad comercial. El área foliar por planta no presentó diferencias significativas entre la fecha 2 y3, sin embargo hubo una tendencia hacia una mayor área foliar en la fecha 2 (2826 cm2 ± 256) que en la fecha 3 (2596 cm2 ± 256). Además, fue la fecha en la que la radiación acumulada incidente fue mayor (1605 mj/m2) en el ciclo de cultivo, ya que ésta fue en aumento desde principios de octubre hasta fines de enero; a partir de ese momento la radiación cayó marcadamente, coincidiendo con el ciclo del cultivo de la fecha 3 (1555 mj/m2). La mayor radiación incidente y la mayor capacidad de captura de la misma (Área Foliar) se tradujo en un mayor peso de la espiga (270 ± 58 gr) para los cultivos sembrados en la fecha 2 respecto de los de la fecha 3 (204 ± 58) y la fecha 1 (190 ± 58). Por otro lado, los cultivos en la fecha 2 presentaron mejor relación grano/marlo (2,57 ± 0,29) y mayor cantidad de granos comerciales (446 ± 45 granos/espiga) diferenciándose significativamente de los cultivos sembrados en la fecha 3 (1,97 ± 0,29) y la fecha 1 (0,92 ± 0,29) para la relación grano/marlo y también para los granos comerciales, 384 ± 45 y 394 ± 45 en los cultivos de la fecha 3 y 1, respectivamente. En vista de los resultados obtenidos se recomienda la fecha de principios de noviembre como fecha óptima de siembra ya que fue en la que se obtuvo el mayor rendimiento y mejor calidad de producto
The Active Mirror Control of the MAGIC Telescope
One of the main design goals of the MAGIC telescopes is the very fast
repositioning in case of Gamma Ray Burst (GRB) alarms, implying a low weight of
the telescope dish. This is accomplished by using a space frame made of carbon
fiber epoxy tubes, resulting in a strong but not very rigid support structure.
Therefore it is necessary to readjust the individual mirror tiles to correct
for deformations of the dish under varying gravitational load while tracking an
object. We present the concept of the Active Mirror Control (AMC) as
implemented in the MAGIC telescopes and the actual performance reached.
Additionally we show that also telescopes using a stiff structure can benefit
from using an AMC.Comment: Contribution to the 30th ICRC, Merida, Mexico, July 2007 on behalf of
the MAGIC Collaboratio
Detection of Cherenkov light from air showers with Geiger-APDs
We have detected Cherenkov light from air showers with Geiger-mode APDs
(G-APDs). G-APDs are novel semiconductor photon-detectors, which offer several
advantages compared to conventional photomultiplier tubes in the field of
ground-based gamma-ray astronomy. In a field test with the MAGIC telescope we
have tested the efficiency of a G-APD / light catcher setup to detect Cherenkov
light from air showers. We estimate a detection efficiency, which is 60% higher
than the efficiency of a MAGIC camera pixel. Ambient temperature dark count
rates of the tested G-APDs are below the rates of the night sky light
background. According to these recent tests G-APDs promise a major progress in
ground-based gamma-ray astronomy.Comment: 4 pages, 5 figures, to appear in the proceedings of the 30th
International Cosmic Ray Conference, Merida, July 200
FlashCam: A fully digital camera for CTA telescopes
The future Cherenkov Telescope Array (CTA) will consist of several tens of
telescopes of different mirror sizes. CTA will provide next generation
sensitivity to very high energy photons from few tens of GeV to >100 TeV.
Several focal plane instrumentation options are currently being evaluated
inside the CTA consortium. In this paper, the current status of the FlashCam
prototyping project is described. FlashCam is based on a fully digital camera
readout concept and features a clean separation between photon detector plane
and signal digitization/triggering electronics.Comment: In Proceedings of the 2012 Heidelberg Symposium on High Energy
Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184
Mirror Position Determination for the Alignment of Cherenkov Telescopes
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with
large apertures to map the faint Cherenkov light emitted in extensive air
showers onto their image sensors. Segmented reflectors fulfill these needs
using mass produced and light weight mirror facets. However, as the overall
image is the sum of the individual mirror facet images, alignment is important.
Here we present a method to determine the mirror facet positions on a segmented
reflector in a very direct way. Our method reconstructs the mirror facet
positions from photographs and a laser distance meter measurement which goes
from the center of the image sensor plane to the center of each mirror facet.
We use our method to both align the mirror facet positions and to feed the
measured positions into our IACT simulation. We demonstrate our implementation
on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and
implementation demonstratio
FACT - Long-term stability and observations during strong Moon light
The First G-APD Cherenkov Telescope (FACT) is the first Cherenkov telescope
equipped with a camera made of silicon photon detectors (G-APD aka. SiPM).
Since October 2011, it is regularly taking data on the Canary Island of La
Palma. G-APDs are ideal detectors for Cherenkov telescopes as they are robust
and stable. Furthermore, the insensitivity of G-APDs towards strong ambient
light allows to conduct observations during bright Moon and twilight. This gain
in observation time is essential for the long-term monitoring of bright TeV
blazars. During the commissioning phase, hundreds of hours of data (including
data from the the Crab Nebula) were taken in order to understand the
performance and sensitivity of the instrument. The data cover a wide range of
observation conditions including different weather conditions, different zenith
angles and different light conditions (ranging from dark night to direct full
Moon). We use a new parmetrisation of the Moon light background to enhance our
scheduling and to monitor the atmosphere. With the data from 1.5 years, the
long-term stability and the performance of the camera during Moon light is
studied and compared to that achieved with photomultiplier tubes so far.Comment: 3 pages, 3 figures, FACT Contribution to the 33rd International
Cosmic Ray Conference (ICRC), Rio de Janeir
FACT - Threshold prediction for higher duty cycle and improved scheduling
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Being operated during different light-conditions, the
threshold settings of a Cherenkov telescope have to be adapted to feature the
lowest possible threshold but also an efficient suppression of triggers from
night-sky background photons. Usually this threshold is set either by
experience or a mini-ratescan. Since the measured current through the sensors
is directly correlated with the noise level, the current can be used to set the
best threshold at any time. Due to the correlation between the physical
threshold and the final energy threshold, the current can also be used as a
measure for the energy threshold of any observation. This presentation
introduces a method which uses the properties of the moon and the source
position to predict the currents and the corresponding energy threshold for
every upcoming observation allowing to adapt the observation schedule
accordingly
FACT - Long-term Monitoring of Bright TeV-Blazars
Since October 2011, the First G-APD Cherenkov Telescope (FACT) is operated
successfully on the Canary Island of La Palma. Apart from the proof of
principle for the use of G-APDs in Cherenkov telescopes, the major goal of the
project is the dedicated long-term monitoring of a small sample of bright TeV
blazars. The unique properties of G-APDs permit stable observations also during
strong moon light. Thus a superior sampling density is provided on time scales
at which the blazar variability amplitudes are expected to be largest, as
exemplified by the spectacular variations of Mrk 501 observed in June 2012.
While still in commissioning, FACT monitored bright blazars like Mrk 421 and
Mrk 501 during the past 1.5 years so far. Preliminary results including the Mrk
501 flare from June 2012 will be presented.Comment: 4 pages, 4 figures, presented at the 33rd ICRC (2013
FACT - How stable are the silicon photon detectors?
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Since the properties of G-APDs depend on auxiliary
parameters like temperature, a feedback system adapting the applied voltage
accordingly is mandatory.
In this presentation, the feedback system, developed and in operation for
FACT, is presented. Using the extraction of a single photon-equivalent (pe)
spectrum as a reference, it can be proven that the sensors can be operated with
very high precision. The extraction of the single-pe, its spectrum up to
10\,pe, its properties and their precision, as well as their long-term behavior
during operation are discussed. As a by product a single pulse template is
obtained. It is shown that with the presented method, an additional external
calibration device can be omitted. The presented method is essential for the
application of G-APDs in future projects in Cherenkov astronomy and is supposed
to result in a more stable and precise operation than possible with
photo-multiplier tubes
- …