8,030 research outputs found

    Landmark-Based Registration of Curves via the Continuous Wavelet Transform

    Get PDF
    This paper is concerned with the problem of the alignment of multiple sets of curves. We analyze two real examples arising from the biomedical area for which we need to test whether there are any statistically significant differences between two subsets of subjects. To synchronize a set of curves, we propose a new nonparametric landmark-based registration method based on the alignment of the structural intensity of the zero-crossings of a wavelet transform. The structural intensity is a multiscale technique recently proposed by Bigot (2003, 2005) which highlights the main features of a signal observed with noise. We conduct a simulation study to compare our landmark-based registration approach with some existing methods for curve alignment. For the two real examples, we compare the registered curves with FANOVA techniques, and a detailed analysis of the warping functions is provided

    A scale-space approach with wavelets to singularity estimation

    Get PDF
    This paper is concerned with the problem of determining the typical features of a curve when it is observed with noise. It has been shown that one can characterize the Lipschitz singularities of a signal by following the propagation across scales of the modulus maxima of its continuous wavelet transform. A nonparametric approach, based on appropriate thresholding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of a signal observed with noise at various scales. In order to identify the singularities of the unknown signal, we introduce a new tool, "the structural intensity", that computes the "density" of the location of the modulus maxima of a wavelet representation along various scales. This approach is shown to be an effective technique for detecting the significant singularities of a signal corrupted by noise and for removing spurious estimates. The asymptotic properties of the resulting estimators are studied and illustrated by simulations. An application to a real data set is also proposed

    Poisson inverse problems

    Get PDF
    In this paper we focus on nonparametric estimators in inverse problems for Poisson processes involving the use of wavelet decompositions. Adopting an adaptive wavelet Galerkin discretization, we find that our method combines the well-known theoretical advantages of wavelet--vaguelette decompositions for inverse problems in terms of optimally adapting to the unknown smoothness of the solution, together with the remarkably simple closed-form expressions of Galerkin inversion methods. Adapting the results of Barron and Sheu [Ann. Statist. 19 (1991) 1347--1369] to the context of log-intensity functions approximated by wavelet series with the use of the Kullback--Leibler distance between two point processes, we also present an asymptotic analysis of convergence rates that justifies our approach. In order to shed some light on the theoretical results obtained and to examine the accuracy of our estimates in finite samples, we illustrate our method by the analysis of some simulated examples.Comment: Published at http://dx.doi.org/10.1214/009053606000000687 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A deconvolution approach to estimation of a common shape in a shifted curves model

    Get PDF
    This paper considers the problem of adaptive estimation of a mean pattern in a randomly shifted curve model. We show that this problem can be transformed into a linear inverse problem, where the density of the random shifts plays the role of a convolution operator. An adaptive estimator of the mean pattern, based on wavelet thresholding is proposed. We study its consistency for the quadratic risk as the number of observed curves tends to infinity, and this estimator is shown to achieve a near-minimax rate of convergence over a large class of Besov balls. This rate depends both on the smoothness of the common shape of the curves and on the decay of the Fourier coefficients of the density of the random shifts. Hence, this paper makes a connection between mean pattern estimation and the statistical analysis of linear inverse problems, which is a new point of view on curve registration and image warping problems. We also provide a new method to estimate the unknown random shifts between curves. Some numerical experiments are given to illustrate the performances of our approach and to compare them with another algorithm existing in the literature

    On the consistency of Fr\'echet means in deformable models for curve and image analysis

    Get PDF
    A new class of statistical deformable models is introduced to study high-dimensional curves or images. In addition to the standard measurement error term, these deformable models include an extra error term modeling the individual variations in intensity around a mean pattern. It is shown that an appropriate tool for statistical inference in such models is the notion of sample Fr\'echet means, which leads to estimators of the deformation parameters and the mean pattern. The main contribution of this paper is to study how the behavior of these estimators depends on the number n of design points and the number J of observed curves (or images). Numerical experiments are given to illustrate the finite sample performances of the procedure

    Stellar granulation and interferometry

    Full text link
    Stars are not smooth. Their photosphere is covered by a granulation pattern associated with the heat transport by convection. The convection-related surface structures have different size, depth, and temporal variations with respect to the stellar type. The related activity (in addition to other phenomena such as magnetic spots, rotation, dust, etc.) potentially causes bias in stellar parameters determination, radial velocity, chemical abundances determinations, and exoplanet transit detections. The role of long-baseline interferometric observations in this astrophysical context is crucial to characterize the stellar surface dynamics and correct the potential biases. In this Chapter, we present how the granulation pattern is expected for different kind of stellar types ranging from main sequence to extremely evolved stars of different masses and how interferometric techniques help to study their photospheric dynamics.Comment: To appear in the Book of the VLTI School 2013, held 9-21 Sep 2013 Barcelonnette (France), "What the highest angular resolution can bring to stellar astrophysics?", Ed. Millour, Chiavassa, Bigot, Chesneau, Meilland, Stee, EAS Publications Series (2015

    Atomic Energy Levels with QED and Contribution of the Screened Self-Energy

    Get PDF
    We present an introduction to the principles behind atomic energy level calculations with Quantum Electrodynamics (QED) and the two-time Green's function method; this method allows one to calculate an effective Hamiltonian that contains all QED effects and that can be used to predict QED Lamb shifts of degenerate, quasidegenerate and isolated atomic levels.Comment: 4 pages, 6 figures, summary of a talk given at the QED2000 Conference held in Trieste, Italy in Oct. 200
    corecore