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Abstract

This paper considers the problem of adaptive estimation of a mean pattern in a randomly

shifted curve model. We show that this problem can be transformed into a linear inverse

problem, where the density of the random shifts plays the role of a convolution operator.

An adaptive estimator of the mean pattern, based on wavelet thresholding is proposed. We

study its consistency for the quadratic risk as the number of observed curves tends to infinity,

and this estimator is shown to achieve a near-minimax rate of convergence over a large class

of Besov balls. This rate depends both on the smoothness of the common shape of the curves

and on the decay of the Fourier coefficients of the density of the random shifts. Hence, this

paper makes a connection between mean pattern estimation and the statistical analysis of

linear inverse problems, which is a new point of view on curve registration and image warping

problems. We also provide a new method to estimate the unknown random shifts between

curves. Some numerical experiments are given to illustrate the performances of our approach

and to compare them with another algorithm existing in the literature.

Keywords: Mean pattern estimation, Curve registration, Inverse problem, Deconvolution, Meyer
wavelets, Adaptive estimation, Besov space, Minimax rate.
AMS classifications: Primary 62G08; secondary 42C40

1 Introduction

1.1 Model and objectives

In many fields of interests including biology, medical imaging or chemistry, observations are
coming from n individuals curves or graylevel images. Such observations are commonly referred
to as functional data, and models involving such data have been recently extensively studied in
statistics (see [41], [42] for a detailed introduction to functional data analysis). In such settings,
it is reasonable to assume that the data at hand Ym,m = 1, . . . , n, satisfy the following white
noise regression model:

dYm(x) = fm(x)dx+ ǫmdWm(x), x ∈ Ω, m = 1, . . . , n (1.1)

where Ω is a subset of R
d, fm : Ω → R are unknown regression functions, andWm are independent

standard Brownian motions on Ω with ǫm representing different levels of additive noise. In many
situations the individual curves or images have a certain common structure which may lead to
the assumption that they are generated from some semi-parametric model of the form

fm(x) = f(x, τm), for x ∈ Ω and some τm ∈ T ⊂ R
p, (1.2)



where f : Ω × T → R represents an unknown shape common to all the fm’s. This shape
function (also called mean pattern) may depend on unknown individual random parameters
τm,m = 1, . . . , n, belonging to a compact set T of R

p, which model individual variations. Such
a semi-parametric representation for the fm’s is the so-called self-modeling regression framework
(SEMOR) introduced by [27]. Shape invariant models (SIM) are a special class of such models
for which (see e.g. [27])

fm(x) = f(φ(x, τm)), (1.3)

where for any τ ∈ T , the function x 7→ φ(x, τ) is a smooth diffeomorphism of Ω and φ : Ω×T → Ω
is a known function. Models such as (1.3) are useful to account for shape variability in time
between curves (see e.g [19], [30]) or in space between images, which is the well-known problem
of curve registration or image warping (see [18] and the discussion therein for an overview, [5],
[6] and references therein). SIM models (1.3) also represent a large class of statistical models to
study the difficult problem of recovering a mean pattern from a set of similar curves or images
in the presence of random deformations and additive noise, which corresponds to the general
setting of Grenander’s theory of shapes [21]. The overall objective of this paper is to discuss
the fundamental problem of estimating of the mean pattern f which can then be used to learn
non-linear modes of variations in time or shape between similar curves or images.

1.2 Previous work on mean pattern estimation

Very few results exist in the literature on nonparametric estimation of f for SIM models (1.3)
based on noisy data from (1.1). The problem of estimating the common shape of a set of
curves that differ only by a time transformation is usually referred to as the curve registration
problem in statistics, and it has received a lot of attention over the last two decades, see e.g
[4], [16], [17], [30], [40], [46]. However, in these papers, an asymptotic study as the number
of curves n grows to infinity is generally not considered. Estimation of the shape function for
SEMOR models related to (1.1) and (1.2) is studied in [27] with a double asymptotic in the
number n of curves and the number of observed time points per curve. In the simplest case of
shifted curves, various approaches have been developed. Based on a model with a fixed number
n of curves, semiparametric estimation of the deformation parameters τm and nonparametric
estimation of the shape function is proposed in [31] and [45]. A generalization of this approach
for the estimation of scaling, rotation and translation parameters for two-dimensional images is
proposed in [6]. Estimation of a common shape for randomly shifted curves and asymptotic in
n is also considered in [43]. There is also a huge literature in image analysis on mean pattern
estimation, and some papers have recently addressed the problem of estimating the common
shape of a set of similar images with asymptotic in the number of images, see e.g. [1], [5], [32]
and references therein. However, in all the above cited papers rates of convergence and optimality
of the proposed estimators for f have not been studied.

1.3 A benchmark model for nonparametric estimation of a mean pattern

The simplest SIM model is the case of randomly shifted curves, namely

fm(x) = f(x− τm), for x ∈ [0, 1] and τm ∈ R,

that has recently received some attention in the statistical literature [8], [31], [43], [45]. In this
paper it will thus be assumed that we observe realizations of n noisy and randomly shifted curves
Y1, . . . , Yn coming from the following Gaussian white noise model

dYm(x) = f(x− τm)dx+ ǫmdWm(x), x ∈ [0, 1], m = 1, . . . , n, (1.4)

where f is the unknown mean pattern of the curves, Wm are independent standard Brownian
motions on [0, 1], the ǫm’s represent levels of noise which may vary from curve to curve, and the
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τm’s are unknown random shifts independent of the Wm’s. The aim of this paper is to study
some statistical aspects related to the problem of estimating f , and to propose new methods of
estimation.

Model (1.4) is realistic in many situations where it is reasonable to assume that the observed
curves represent replications of almost the same process and when a large source of variation in
the experiments is due to transformations of the time axis. Such a model is commonly used in
many applied areas dealing with functional data such as neuroscience [25] or biology [43]. More
generally, the model (1.4) represents a kind of benchmark model for studying the problem of
recovering the mean pattern f in SIM models. The results derived in this paper show that the
model (1.4), although simple, already provides some new insights on the statistical aspects of
mean pattern estimation.

The function f : R → R is assumed to be periodic with period 1, and the shifts τm are
supposed to be independent and identically distributed (iid) random variables with density
g : R → R

+ with respect to the Lebesgue measure dx on R. Our goal is to estimate non-
parametrically the shape function f on [0, 1] as the number of curves n goes to infinity.

Let L2([0, 1]) be the space of squared integrable functions on [0, 1] with respect to dx, and
denote by ‖f‖2 =

∫ 1
0 |f(x)|2dx the squared norm of a function f . Assume that F ⊂ L2([0, 1])

represents some smoothness class of functions (e.g a Sobolev or a Besov ball), and let f̂n ∈
L2([0, 1]) be some estimator of the common shape f , i.e a measurable function of the random
processes Ym, m = 1, . . . , n. For some f ∈ F , the risk of the estimator f̂n is defined to be

R(f̂n, f) = E‖f̂n − f‖2

where the above expectation E is taken with respect to the law of {Ym,m = 1, . . . , n}. In this
paper, we propose to investigate the optimality of an estimator by introducing the following
minimax risk

Rn(F) = inf
f̂n

sup
f∈F

R(f̂n, f),

where the above infimum is taken over the set of all possible estimators in model (1.4). One of
the main contributions of this paper is to derive asymptotic lower and upper bounds for Rn(F)
which, to the best of our knowledge, has not been considered before.

Indeed, we show that there exists constants M1,M2, a sequence of reals rn = rn(F) tending
to infinity, and an estimator f̂∗n such that

lim
n→+∞

rnRn(F) ≥M1 and lim
n→+∞

rn sup
f∈F

R(f̂∗n, f) ≤M2.

However, the construction of f̂∗n may depend on unknown quantities such as the smoothness of
f , and such estimates are therefore called non-adaptive. Since it is now recognized that wavelet
decomposition is a powerful tool to derive adaptive estimators, see e.g [13], a second contribution
of this paper is thus to propose wavelet-based estimators f̂n that attain a near-minimax rate of
convergence in the sense there exits a constant M2 such that

lim
n→+∞

(log n)−βrn sup
f∈F

R(f̂n, f) ≤M2, for some β > 0.

1.4 Main result

Minimax risks will be derived under particular smoothness assumptions on the density g. The
main result of this paper is that the difficulty of estimating f is quantified by the decay to zero
of the Fourier coefficients γℓ of the density g of the shifts defined as

γℓ = E

(

e−i2πℓτ
)

=

∫ +∞

−∞
e−i2πℓxg(x)dx, (1.5)
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for ℓ ∈ Z. Depending how fast these Fourier coefficients tend to zero as |ℓ| → +∞, the recon-
struction of f will be more or less accurate. This comes from the fact that the expected value of
each observed process Ym(x) is given by

EYm(x) = Ef(x− τm) =

∫ +∞

−∞
f(x− τ)g(τ)dτ, for x ∈ [0, 1].

This expected value is thus the convolution of f by the density g which makes the problem
of estimating f an inverse problem whose degree of ill-posedness and associated minimax risk
depend on the smoothness assumptions on g.

This phenomenon is a well-known fact in deconvolution problems, see e.g [26] [37], [38], and
more generally for linear inverse problems as studied in [9]. In this paper, the following type of
assumption on g is considered:

Assumption 1 The Fourier coefficients of g have a polynomial decay i.e. for some real ν > 0,
there exist two constants Cmax ≥ Cmin > 0 such that Cmin|ℓ|−ν ≤ |γℓ| ≤ Cmax|ℓ|−ν for all ℓ ∈ Z.

In standard inverse problems such as deconvolution, the optimal rate of convergence we can
expect from an arbitrary estimator typically depends on such smoothness assumptions. The
parameter ν is usually referred to as the degree of ill-posedness of the inverse problem, and it
quantifies the difficult of inverting the convolution operator. The following theorem shows that a
similar phenomenon holds for the minimax risk associated to model (1.4). Note that to simplify
the presentation, all the theoretical results are given for the simple setting where the level of
noise is the same for all curves i.e. ǫm = ǫ for all m = 1, . . . , n and some ǫ > 0. Finally one also
needs the following assumption on the decay of the density g:

Assumption 2 There exists a constant C > 0 and a real α > 1 such that the density g satisfies
g(x) ≤ C

1+|x|α for all x ∈ R.

Note that Assumption 2 is not a very restrictive condition as g is supposed to be an integrable
function on R.

Theorem 1 Suppose that the smoothness class F is a Besov ball Bs
p,q(A) of radius A > 0 with

p, q ≥ 1 and smoothness parameter s > 0 (a precise definition of Besov spaces will be given later
on). Suppose that g satisfies Assumption 1 and 2. Let p′ = min(2, p) and assume that s ≥ 1/p′.
If s > 2ν + 1, then

rn(F) = n
2s

2s+2ν+1 .

Hence, Theorem 1 shows that under Assumption 1 the minimax rate rn is of polynomial order
of the sample size n, and that this rate deteriorates as the degree of ill-posedness ν increases.
Such a behavior is well known for standard periodic deconvolution in the white noise model [26],
[37], and Theorem 1 shows that a similar phenomenon holds for the model (1.4). To the best of
our knowledge, this is a new result which makes a connection between mean pattern estimation
and the statistical analysis of deconvolution problems.

1.5 Fourier Analysis and an inverse problem formulation

Let us first remark that the model (1.4) exhibit some similarities with periodic deconvolution
in the white noise model as described in [26]. For x ∈ [0, 1], let us define the following density
function

G(x) =
∑

k∈Z

g(x+ k). (1.6)
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Note that G(x) exists for all x ∈ [0, 1] provided g has a sufficiently fast decay at infinity, see
Assumption 2. Since f is periodic with period 1, one has

∫ +∞

−∞
f(x− τ)g(τ)dτ =

∫ 1

0
f(x− τ)G(τ)dτ,

and note that γℓ =
∫ +∞
−∞ e−i2πℓxg(x)dx =

∫ 1
0 e

−i2πℓxG(x)dx. Hence, if one defines ξm(x) =

f(x − τm) −
∫ 1
0 f(x − τ)G(τ)dτ and ξ(x) = 1

n

∑n
m=1 ξm(x), then taking the mean of the n

equations in (1.4) yields the model

dY (x) =

∫ 1

0
f(x− τ)G(τ)dτdx + ξ(x)dx+

ǫ√
n
dW (x), x ∈ [0, 1], (1.7)

with

ǫ2 =
1

n

n∑

m=1

ǫ2m, (1.8)

and where W (x) is a standard Brownian motion [0, 1].
The model (1.7) differs from the periodic deconvolution model investigated in [26] by the

error term ξ(x). Asymptotically ξ(x) is a Gaussian variable, so this suggests to use the wavelet
thresholding procedures developed in [26] to derive upper bounds for the minimax risk. However,
it should be noted that the additive error term ξ(x) significantly complicates the estimating
procedure as the variance of ξ(x) clearly depends on the unknown function f . Moreover, deriving
lower bounds for the minimax risk in models such as (1.7) is significantly more difficult than in
the standard white noise model without the additive term ξ(x).

Now let us formulate models (1.4) and (1.7) in the Fourier domain. Supposing that f ∈
L2([0, 1]), we denote by θℓ its Fourier coefficients for ℓ ∈ Z, namely θℓ =

∫ 1
0 e

−2iℓπxf(x)dx. The
model (1.4) can then be rewritten as

cm,ℓ :=

∫ 1

0
e−2iℓπxdYm(x) = θℓe

−i2πℓτm + ǫmzℓ,m (1.9)

= θℓγℓ + ξℓ,m + ǫmzℓ,m,

with ξℓ,m = θℓe
−i2πℓτm − θℓγℓ, and where zℓ,m are iid NC (0, 1) variables, i.e. complex Gaussian

variables with zero mean and such that E|zℓ,n|2 = 1.
Thus, we can compute the sample mean c̃ℓ of the ℓth Fourier coefficient over the n curves as

c̃ℓ =
1

n

n∑

m=1

cℓ,m = θℓγ̃ℓ + ǫηℓ = θℓγℓ + ξℓ + ǫηℓ, (1.10)

with γ̃ℓ = 1
n

∑n
m=1 e

−i2πℓτm , ξℓ = 1
n

∑n
m=1 ξℓ,m, and where the ηℓ’s are iid complex Gaussian

variables with zero mean and such that E|ηℓ|2 = 1
n . The average Fourier coefficients c̃ℓ in

equation (1.10) can thus be viewed as a set of observations which is very close to a sequence
space formulation of a statistical inverse problem as described e.g by [9]. As in model (1.7) the
additive error term ξℓ is asymptotically Gaussian, however its variance is 1

n |θℓ|2(1− |γℓ|2) which
is obviously unknown as it depends on f .

If we assume that the density g of the random shifts is known, one can perform a deconvolution
step by taking

θ̂ℓ =
c̃ℓ
γℓ

= θℓ
γ̃ℓ
γℓ

+ ǫ
ηℓ
γℓ
. (1.11)

to estimate the Fourier coefficients of f since, for large n, γ̃ℓ
γℓ

is close to 1 by the strong law of
large numbers.

Based on the θ̂ℓ’s, two types of estimators are studied. The simplest one uses spectral cut-off
with a cutting frequency depending on the smoothness assumptions on f , and is thus non-
adaptive. The second estimator is based on wavelet thresholding and is shown to be adaptive
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using the procedure developed in [26]. Note that part of our results are presented for the case
where the coefficients γℓ are known. Such a framework is commonly used in nonparametric
regression and inverse problems to obtain consistency results and to study asymptotic rates of
convergence, where it is generally supposed that the law of the additive error is Gaussian with
zero mean and known variance ǫ2, see e.g [26] [37], [9]. In model (1.4), the random shifts may
be viewed as a second source of noise and for the theoretical analysis of this problem the law of
this other random noise is also supposed to be known.

1.6 An inverse problem with unknown operator

If the density g is unknown one can view the problem of estimating f in model (1.4) as a
deconvolution problem with unknown eigenvalues which complicates significantly the estimation
procedure. Such a framework corresponds to the general setting of an inverse problem with a
partially unknown operator. Recently, some papers have addressed this problem, see e.g. [10],
[14], [23], [36], assuming that an independent sample of noisy eigenvalues or noisy operator is
available which allows an estimation of the γℓ’s. However such an assumption is not applicable
to our model (1.4). Therefore, we introduce a new method for estimating f is the case of an
unknown density g which leads to a new class of estimators to recover a mean pattern.

1.7 Organization of the paper

In Section 2, we consider a linear but non-adaptive estimator based on spectral cut-off. In
Section 3, a nonlinear and adaptive estimator based on wavelet thresholding is studied in the
case of known density g, and upper bound for the minimax risk are studied over Besov balls. In
Section 4, we derive lower bounds for the minimax risk. In Section 5, it is explained how one
can estimate the mean pattern f when the density g is unknown. Finally, in Section 6, some
numerical examples are proposed to illustrate the performances of our approach and to compare
them with another algorithm proposed in the literature. All proofs are deferred to a technical
Appendix at the end of the paper.

2 Linear estimation of the common shape and upper bounds for

the risk for Sobolev balls

2.1 Risk decomposition

For ℓ ∈ Z, a linear estimator of the θℓ’s is given by θ̂λℓ = λℓ
c̃ℓ
γℓ
, where λ = (λℓ)ℓ∈Z is a sequence

of nonrandom weights called a filter. An estimator f̂n,λ of f is then obtained via the inverse

Fourier transform f̂n,λ(x) =
∑

ℓ∈Z
θ̂λℓ e

−i2πℓx, and thanks to the Parseval’s relation, the risk of this

estimator is given by R(f̂n,λ, f) = E
∑

ℓ∈Z
|θ̂ℓ− θℓ|2. The problem is then to choose the sequence

(λℓ)ℓ∈Z in an optimal way. The following proposition gives the bias-variance decomposition of
R(f̂n,λ, f).

Proposition 1 For any given nonrandom filter λ, the risk of the estimator f̂n,λ can be decom-
posed as

R(f̂n,λ, f) =
∑

ℓ∈Z

(λℓ − 1)2|θℓ|2

︸ ︷︷ ︸

Bias

+
1

n

∑

ℓ∈Z

λ2
ℓ

[

|θℓ|2
(

1

|γℓ|2
− 1

)

+
ǫ2

|γℓ|2
]

︸ ︷︷ ︸

V ariance

. (2.1)

Note that the decomposition (2.1) does not correspond exactly to the classical bias-variance
decomposition for linear inverse problems. Indeed, the variance term in (2.1) differs from the
classical expression of the variance for linear estimator in statistical inverse problems which would

be in our notations ǫ2
∑

ℓ∈Z

λ2
ℓ

|γℓ|2 . Hence, contrary to classical inverse problems, the variance term

of the risk depends also on the Fourier coefficients θℓ of the unknown function f to recover.
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2.2 Linear estimation

Let us introduce the following smoothness class of functions which can be identified with a
periodic Sobolev ball

Hs(A) =

{

f ∈ L2([0, 1]) ;
∑

ℓ∈Z

(1 + |ℓ|2s)|θℓ|2 ≤ A

}

for some constant A and some smoothness parameter s > 0, where θℓ =
∫ 1
0 e

−2iℓπxf(x)dx. Now
consider a linear estimator obtained by spectral cut-off, i.e. for a projection filter of the form
λMℓ = 11|ℓ|≤M for some integer M . For an appropriate choice of M , the following proposition

gives the asymptotic behavior of the risk R(f̂n,λM , f).

Proposition 2 Assume that f belongs to Hs(A) for some real s > 1/2 and A > 0, and that
g satisfies (1) i.e. polynomial decay of the γℓ’s. Then, if M = Mn is chosen such that Mn ∼
n

1
2s+2ν+1 , then there exists a constant C not depending on n such that as n→ +∞

sup
f∈Hs(A)

R(f̂n,λM , f) ≤ Cn−
2s

2s+2ν+1 .

The above choice for Mn depends on the smoothness s of the function f which is generally
unknown in practice and such a spectral cut-off estimator is thus called non-adaptive. Moreover,
the result is only suited for smooth functions since Sobolev balls Hs(A) for s > 1/2 are not
suited to model shape functions f which may have singularities such as points of discontinuity.

3 Nonlinear estimation with Meyer wavelets and upper bounds

for the risk for Besov balls

Wavelets have been successfully used for various inverse problems [12], and for the specific case
of deconvolution Meyer wavelets, a special class of band-limited functions introduced by [35],
have recently received special attention in nonparametric regression, see [26] and [37].

3.1 Wavelet decomposition and the periodized Meyer wavelet basis

This wavelet basis is derived through the periodization of the Meyer wavelet basis of L2(R)
(see [26] for further details on its construction). Denote by φj,k and ψj,k the Meyer scaling and
wavelet functions at scale j ≥ 0 and location 0 ≤ k ≤ 2j − 1. For any function f of L2([0, 1]), its

wavelet decomposition can be written as: f =
∑2j0−1

k=0 cj0,kφj0,k +
∑+∞

j=j0

∑2j−1
k=0 βj,kψj,k, where

cj0,k =
∫ 1
0 f(x)φj0,k(x)dx, βj,k =

∫ 1
0 f(x), ψj,k(x)dx and j0 ≥ 0 denotes the usual coarse level of

resolution. Moreover, the squared norm of f is given by ‖f‖2 =
∑2j0−1

k=0 c2j0,k+
∑+∞

j=j0

∑2j−1
k=0 β2

j,k.
It is well known that Besov spaces can be characterized in terms of wavelet coefficients (see
e.g [26]). Let s > 0 denote the usual smoothness parameter, then for the Meyer wavelet ba-
sis and for a Besov ball Bs

p,q(A) of radius A > 0 with 1 ≤ p, q ≤ ∞, one has that Bs
p,q(A) =

{

f ∈ L2([0, 1]) :
(
∑2j0−1

k=0 |cj0,k|p
) 1

p
+

(
∑+∞

j=j0
2j(s+1/2−1/p)q

(
∑2j−1

k=0 |βj,k|p
) q

p

) 1
q

≤ A

}

with the

respective above sums replaced by maximum if p = ∞ or q = ∞.
Meyer wavelets can be used to efficiently compute the coefficients cj,k and βj,k by using the

Fourier transform. Indeed, thanks to the Plancherel’s identity, one obtains that

βj,k =
∑

ℓ∈Ωj

ψj,kℓ θℓ, (3.1)
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where ψj,kℓ =
∫ 1
0 ψj,k(x)e

−i2πℓxdx denote the Fourier coefficients of ψj,k and Ωj = {ℓ ∈ Z;ψj,kℓ 6=
0}. As Meyer wavelets ψj,k are band-limited Ωj is a finite subset set of [−2j+2c0,−2jc0] ∪
[2jc0, 2

j+2c0] with c0 = 2π/3 (see [26]), and fast algorithms for computing the above sum have
been proposed by [28] and [39]. The coefficients cj0,k can be computed analogously with φ instead

of ψ and Ω̃j0 = {ℓ ∈ Z;φj0,kℓ 6= 0} instead of Ωj.

Hence, the noisy Fourier coefficients θ̂ℓ given by (1.11) can be used to quickly compute the
following empirical wavelet coefficients of f as

β̂j,k =
∑

ℓ∈Ωj

ψj,kℓ θ̂ℓ and ĉj0,k =
∑

ℓ∈Ωj0

φj0,kℓ θ̂ℓ. (3.2)

3.2 Nonlinear estimation via hard-thresholding

It is well known that adaptivity can be obtained by using nonlinear estimators based on appro-
priate thresholding of the estimated wavelet coefficients (see e.g [13]) . A non-linear estimator
by hard-thresholding is defined by

f̂hn =

2j0−1∑

k=0

ĉj0,kφj0,k +

j1∑

j=j0

2j−1∑

k=0

β̂j,k11{|β̂j,k|>λj,k}ψj,k (3.3)

where the λj,k’s are appropriate thresholds (positive numbers), and j1 is the finest resolution
level used for the estimator. As shown by [26], for periodic deconvolution the choice for j1 and
the thresholds λj,k typically depends on the degree ν of ill-posedness of the problem. Following

Theorem 1 in [26], to derive rate of convergence for f̂hn one has to control moments of order 2
and 4 of |β̂j,k − βj,k| and the probability of deviation of β̂j,k from βj,k.

Proposition 3 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s − 1/p + 1/2 > 0 and A > 0. Assume that g
satisfies Assumptions 1 and 2. Then, there exist positive constants C3 and C4 such that for any
j ≥ j0 ≥ 0, 0 ≤ k ≤ 2j−1 and all f ∈ Bs

p,q(A), E|ĉj0,k−cj0,k|2 ≤ C3
22j0ν

n , E|β̂j,k−βj,k|2 ≤ C3
22jν

n ,

and E|β̂j,k − βj,k|4 ≤ C4

(
2j4ν

n2 + 2j(4ν+1)

n3

)

.

Proposition 3 shows that the variance of the empirical wavelet coefficients is proportional
to 22jν

n which comes from the amplification of the noise by the inversion of the convolution
operator. The choice of the threshold λj,k is done by controlling the probability of deviation of

the empirical wavelet coefficients β̂j,k from the true wavelet coefficient βj,k which is given by the
following proposition:

Proposition 4 Let f ∈ Bs
p,q(A), n ≥ 1 and j ≥ 0. Suppose that g satisfies Assumption 2. Let

η > 0. For j ≥ 0 and 0 ≤ k ≤ 2j − 1 define the following threshold

λj,k = λj = 2σj

√

2η log(n)

n
, (3.4)

with σ2
j = 2−jǫ2

∑

ℓ∈Ωj
|γℓ|−2. Then, for all sufficiently large j,

P

(

|β̂j,k − βj,k| ≥ λj

)

≤ 2n−η.

Note that the level-dependent threshold (3.4) corresponds to the usual universal thresholds
for deconvolution problem based on wavelet decomposition as in [26]. Then, using the thresholds
λj , we finally arrive at the following theorem which gives an upper bound for the minimax risk
over a large class of Besov balls.
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Theorem 2 Assume that g satisfies Assumptions 1 and 2. Let j1 and j0 be the largest integers

such that 2j1 ≤
(
n log(n)−1

) 1
2ν+1 and 2j0 ≤ log(log(n)). Let f̂hn be the non-linear estimator

obtained by hard-thresholding with the above choice for j1 and j0, and using the thresholds λj
defined by equation (3.4) with η ≥ 2. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A > 0. Let p′ = min(2, p),
s′ = s+ 1/2 − 1/p, and assume that s ≥ 1/p′.

If s ≥ (2ν + 1)(1/p − 1/2), then

sup
f∈Bs

p,q(A)
‖f̂hn − f‖2 = O

(

n−
2s

2s+2ν+1 (log n)β
)

with β =
2s

2s + 2ν + 1
.

If s < (2ν + 1)(1/p − 1/2), then

sup
f∈Bs

p,q(A)
‖f̂hn − f‖2 = O

(
(
n−1 log(n)

) 2s′

2s′+2ν

)

.

In standard periodic deconvolution in the white noise model (see e.g. [26]), there exists two
different upper bounds for the minimax rate which are usually referred to as the dense case
(s ≥ (2ν+1)(1/p−1/2)) when the hardest functions to estimate are spread uniformly over [0, 1],
and the sparse case (s < (2ν + 1)(1/p − 1/2)) when the worst functions to estimate have only
one non-vanishing wavelet coefficient. Theorem 2 shows that a similar phenomenon holds for the
model (1.4), and to the best of our knowledge, this is a new result.

4 Minimax lower bound

The following theorem gives an asymptotic lower bound on the minimax risk Rn(B
s
p,q(A)) for a

large class of Besov balls.

Theorem 3 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A > 0. Suppose that g satisfies Assumption 1. Let
p′ = min(2, p). Assume that s ≥ 1/p′ and ν > 1/2.

If s ≥ (2ν+1)(1/p− 1/2) and s > 2ν+1 (dense case), there exits a constant M1 depending only
on A, s, p, q such that

Rn(B
s
p,q(A)) ≥M1n

− 2s
2s+2ν+1 as n→ +∞

In the dense case, the hardest functions to estimate are spread uniformly over the interval
[0, 1], and the proof is based on an adaptation of Assouad’s cube technique (see e.g Lemma 10.2 in
[22]) to the specific setting of model (1.4). Lower bounds for minimax risk are classically derived
by controlling the probability for the likelihood ratio (in the statistical model of interested) of
being strictly greater than some constant uniformly over an appropriate set of test functions. To
derive Theorem 3 , we show that one needs to control the expectation over the random shifts of
the likelihood ratio associated to model (1.4), and not only the likelihood ratio itself. Hence, the
proof of Theorem 3 is not a direct and straightforward adaptation of Assouad’s cube technique
or Lemma 10.1 in [22] as used classically in a standard white noise model to derive minimax
risk in nonparametric deconvolution in the dense case. For more details, we refer to the proof of
Theorem 3 in the Appendix.

Deriving minimax risk in the dense case for the model (1.4) is rather difficult and the proof
is quite long and technical. In the sparse case, finding lower bounds for the minimax rate is also
a difficult task. We believe that this could be done by adapting to model (1.4) a result by [29]
which yields a lower bound for a specific problem of distinguishing between a finite number of
hypotheses (see Lemma 10.1 in [22]). However, this is far beyond the scope of this paper and we
leave this problem open for future wok.
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5 Estimating f when the density g is unknown

Obviously, assuming that the density g of the shifts is known is not very realistic in practice.
However, estimating f when the density g is unknown falls into the setting of inverse problems
with an unknown operator which is a difficult problem. Recently, some papers [10], [14], [23], [36]
have considered nonparametric estimator for inverse problem with a partially unknown operator,
by assuming that an independent sample of noisy eigenvalues is available which allows to build
an estimator of the γℓ’s. In the settings of these papers, the distribution of the noisy eigenvalues
sample is supposed to be known (typically Gaussian). However, in model (1.4), such assumptions
are not realistic, and therefore a data-based estimator of g has to be found. For this purpose, we
propose to make a connection between mean pattern estimation in model (1.4) and well-known
results on Frechet mean estimation for manifold-valued variables, see e.g. [2], [3].

5.1 Frechet mean for functional data

Suppose that Z1, . . . , Zn denote iid random variables taking their values in a vector space V .
As V is a linear space (with addition well defined), an estimator of a mean pattern for the
Zm’s is given by the usual linear average Zn = 1

n

∑n
m=1 Zm. However in many applications,

some geometric and statistical considerations may lead to the assumption that two vectors Z,Z ′

in V are considered to be the same if they are equal up to certain transformations which are
represented by the action of some group H on the space V . A well-known example (see [2], [3]
and references therein) is the case where V = R

2×k, the space of k points in the plane R
2, and

H is generated by composition of scaling, rotations and translations of the plane, namely

h · Z = a

(
cos θ − sin θ
sin θ cos θ

)

Z + b,

for h = h(a, θ, b) ∈ H, with (a, θ, b) ∈ R
+ × [0, 2π] × R

2. In this setting, two vectors Z,Z ′ ∈
R

2×k represent the same shape if dH(Z,Z ′) := inf(a,θ,b)∈R+×[0,2π]×R2 ‖Z − h(a, θ, b) · Z ′‖R2k = 0,

which leads to the Kendall’s shape space Σk
2 consisting of the equivalent classes of shapes in

R
2×k under the action of scaling, rotations and translations (see e.g. [2], [3] and references

therein). Since the space Σk
2 is a nonlinear manifold, the usual linear average Zn does not fall

into Σk
2 due to the fact that the Euclidean distance ‖ · ‖R2×k is not meaningful to represent

shape variations. A better notion of empirical mean Z̃n of n shapes in R
2×k is given by (see

e.g. [2]): Z̃n = arg minZ∈Σk
2

1
n

∑n
m=1 d

2
H(Z,Zm). More generally, Fr’echet [15] has extended

the notion of averaging to general metric spaces via mean squared error minimization in the
following way: if Z1, . . . , Zn are iid random variables in a general metric space M, with a
distance d : M×M → R

+, then the Frechet mean of a collection of such data points is defined
as the minimizer (not necessarily unique) of the sum-of-squared distances to each of the data
points, that is

Z̃n = arg min
Z∈M

1

n

n∑

m=1

d2(Z,Zm).

Now let us return to the randomly shifted curve model (1.4). Define H = R as the translation
group acting on periodic functions f ∈ L2([0, 1]) with period 1 by

τ · f(x) = f(x+ τ), for x ∈ [0, 1] and τ ∈ H.

Let Y1, . . . , Yn be n functions (possibly random) in L2([0, 1]). Following the definition of Fr’echet
mean, a notion of average for functional data taking into account the action of the translation
group H = R would be

f̃n = arg min
f∈L2([0,1])

1

n

n∑

m=1

min
τm∈R

∫ 1

0
|f(x) − Ym(x+ τm)|2dx.
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If the Ym’s are noisy curves generated from the randomly shifted curve model (1.4), a pre-
smoothing step of the observed curves seems natural to compute a consistent Frechet mean
estimate. In the case of the translation group, this smoothing step and the definition of Frechet
mean can be expressed in the Fourier domain as

(θ̂−ℓ0 , . . . , θ̂ℓ0) = arg min
(θ−ℓ0

,...,θℓ0
)∈R2ℓ0+1

1

n

n∑

m=1

min
τm∈R

∑

|ℓ|≤ℓ0
|cm,ℓe2iℓπτm − θℓ|2, (5.1)

where cm,ℓ =
∫ 1
0 e

−2iℓπxdYm(x) and ℓ0 is some frequency cut-off parameter whose choice will

be discussed later. A smoothed Frechet mean is then given by f̃n,ℓ0 =
∑

|ℓ|≤ℓ0 θ̂ℓe
−2iℓπx. Then,

define the following criterion for τ = (τ1, . . . , τn) ∈ R
n

Mn(τ ) =
1

n

n∑

m=1

∑

|ℓ|≤ℓ0

∣
∣
∣
∣
∣
∣

cm,ℓe
2iℓπτm − 1

n





n∑

q=1

cq,ℓe
2iℓπτq





∣
∣
∣
∣
∣
∣

2

, (5.2)

and remark that the computation of f̄n,ℓ0 can be made in two steps since it can be checked that

θ̂ℓ = 1
n

∑n
m=1 cm,ℓe

2iℓπτ̂m , where

(τ̂1, . . . , τ̂n) = arg min
(τ1,...,τn)∈Rn

Mn(τ1, . . . , τn). (5.3)

Therefore, computing the Frechet mean of the smoothed curves Y1, . . . , Yn requires minimization
of the above criteria which automatically yields estimators of the random shifts τ1, . . . , τn in
model (1.4). This allows to construct an estimator of the common shape f by f̃n,ℓ0 in the case
of an unknown density g, and the estimates (τ̂1, . . . , τ̂n) of the random shifts can be used to
estimate the density g itself and the eigenvalues γℓ. The goal of this section is thus to study
some statistical properties of such a two-step procedure which, to the best of our knowledge, has
not been considered before in the setting of model (1.4) and in connection with Frechet mean for
functional data. Moreover, it will be shown in our numerical experiments that the criterion (5.3)
can be minimized using a gradient-descent algorithm which leads to a new and fast method for
estimating f in the case of an unknown density g.

5.2 Upper bound for the estimation of the shifts

Recall that our model (1.4) in the Fourier domain is

cm,ℓ = θℓe
−i2πℓτ∗m + ǫzℓ,m, ℓ ∈ Z for m = 1, . . . , n, (5.4)

where zℓ,m are iid NC (0, 1) variables, the random shifts τ∗m,m = 1, . . . , n are i.i.d variables with

density g, and θℓ =
∫ 1
0 f(x)e−i2πℓxdx. Model (5.4) is clearly non-identifiable, as for any τ0 ∈ R,

one can replace the θℓ’s by θℓe
i2πℓτ0 and the τ∗m’s by τ∗m − τ0 without changing the formulation

of the model. Let us thus introduce the following identifiability conditions:

Assumption 3 The density g has a compact support included in the interval T = [−1
4 ,

1
4 ] and

has zero mean i.e. is such that
∫

T τg(τ)dτ = 0.

Assumption 4 The unknown shape function f is such that θ1 6= 0.

Let T n = {(τ1, . . . , τn) ∈ T n such that
∑n

m=1 τm = 0}. Using the identifiability condition given
by Assumption 3, it is natural to define estimators of the true shifts τ∗1 , . . . , τ

∗
n as

τ̂ = (τ̂1, . . . , τ̂n) = arg min
τ∈T n

Mn(τ ),

i.e. by considering the estimators that minimize the empirical criterion Mn(τ ) on the constrained
set T n. Then, the following theorem holds:
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Theorem 4 Suppose that Assumptions 3 and 4 hold. Then, for any t > 0

P

(

1

n

n∑

m=2

(τ̂m − τ∗m)2 ≥ C(f, ℓ0, ǫ, n, t, g)

)

≤ 3 exp(−t), (5.5)

with C(f, ℓ0, ǫ, n, t, g) = 4max
[

C1(f, ℓ0)
(√

C2(ǫ, n, ℓ0, t) + C2(ǫ, n, ℓ0, t)
)

, C3(t, n, g)
]

, where

C1(f, ℓ0) is a positive constant depending only on the shape function f and the frequency cut-off
parameter ℓ0,

C2(ǫ, n, ℓ0, t) = ǫ2(2ℓ0 + 1) + 2ǫ2
√

2ℓ0 + 1

n
t+ 2

ǫ2

n
t,

and

C3(t, n, g) =

(√

2σ2
g

t

n
+

t

12n

)2

with σ2
g =

∫

T
τ2g(τ)dτ.

Theorem 4 provides an upper bound (in probability) for the consistency of the estimators
τ̂m of the true random shifts τ∗m,m = 2, . . . , n using the standard squared distance. Note that
since the minimum of Mn(τ ) is computed on the constrained set T n, it follows that τ̂1 =
−∑n

m=2 τ̂m. However, one can remark that as n → +∞, the constant C(f, ℓ0, ǫ, n, t, g) in
inequality (5.5) tends to 4C1(f, ℓ0)

(
ǫ2(2ℓ0 + 1) + ǫ

√
2ℓ0 + 1

)
. This shows that τ̂m,m = 2, . . . , n

are not consistent estimators in the sense that inequality (5.5) cannot be used to prove that
limn→+∞ 1

n

∑n
m=2(τ̂m − τ∗m)2 = 0 in probability. To the contrary, inequality (5.5) suggests that

there exists a constant C > 0 such that 1
n

∑n
m=2(τ̂m − τ∗m)2 > C

(
ǫ2(2ℓ0 + 1) + ǫ

√
2ℓ0 + 1

)
with

positive probability, and that the accuracy of the estimates τ̂m,m = 2, . . . , n should depend on
the level of noise ǫ2 and the frequency cut-off ℓ0.

The choice of the frequency cut-off ℓ0 used to compute these estimators is a delicate model
selection problem. Theorem 4 suggests that this choice should depend on n and the level of noise
ǫ, but finding data-based values for ℓ0 remains a challenge that we leave open for future work.

5.3 Lower bound for the estimation of the shifts

Let us now prove that the consistency of any estimate of the random shifts in model (5.4)
is limited by the level of noise ǫ2 in the observed curves. For this let us make the following
smoothness assumptions:

Assumption 5 The function f is such that
∑

ℓ∈Z
(2πℓ)2|θℓ|2 < +∞.

Assumption 6 The density g is compactly supported on a interval T = [τmin, τmax] such that
limτ→τmin

g(τ) = limτ→τmax g(τ) = 0.

Then, using general results on the Van Tree’s inequality [20] in model (5.4), the following
theorem holds :

Theorem 5 Denote by X = (cm,ℓ)ℓ∈Z,m=1,...,n the set of observations taking values in the set
X = C

∞×n. Let τ̂n = τ̂n(X) denote any estimator (a measurable function of the observations
X) of the true shifts (τ1, . . . , τn). Then, under Assumptions 5 and 6

E

(

1

n

n∑

m=1

(τ̂nm − τ∗m)2

)

≥ ǫ2

∑

ℓ∈Z
(2πℓ)2|θℓ|2 + ǫ2

∫

T
(
∂
∂τ log g(τ)

)2
g(τ)dτ

.

Clearly, Theorem 5 shows that as n → +∞ then E
(

1
n

∑n
m=1(τ̂

n
m − τ∗m)2

)
does not converge

to zero which explains the results obtained in Theorem 4 on the consistency of the estimators
τ̂m,m = 2, . . . , n based on Frechet mean for functional data. Note that Assumption 5 can be
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avoided if one only considers estimators τ̂n,ℓ0 of the shifts based on the observations cm,ℓ for
m = 1, . . . , n and |ℓ| ≤ ℓ0 in model (5.4). In this case the lower bound in Theorem 5 becomes

E

(

1

n

n∑

m=1

(τ̂n,ℓ0m − τ∗m)2

)

≥ ǫ2

∑

|ℓ|≤ℓ0(2πℓ)
2|θℓ|2 + ǫ2

∫

T
(
∂
∂τ log g(τ)

)2
g(τ)dτ

.

5.4 Estimation of the mean pattern f and the density g

An estimator of the eigenvalue γℓ is given by

γ̂ℓ =
1

n

n∑

m=2

e−i2πℓτ̂m , (5.6)

for |ℓ| ≤ ℓ0 and an estimator for the density g is naturally given by ĝ(x) =
∑

|ℓ|≤ℓ0 γ̂ℓe
−i2πℓx. The

mean pattern f can be estimated by the smoothed Frechet mean f̃n,ℓ0 defined in Section 5.1, but
following the results in Section 3 on nonlinear wavelet-based estimation, two other estimators
for f can be defined: the first one is given by

f̂n,1 =

2j0−1∑

k=0

ĉj0,k,1φj0,k +

j1∑

j=j0

2j−1∑

k=0

β̂j,k,111{|β̂j,k,1|>λ̂j,1}ψj,k (5.7)

where β̂j,k,1 =
∑

ℓ∈Ωj
ψj,kℓ θ̂ℓ,1 and ĉj0,k,1 =

∑

ℓ∈Ωj0
φj0,kℓ θ̂ℓ,1 with θ̂ℓ,1 = 1

γ̂ℓ

(
1
n

∑n
m=1 cℓ,m

)
, and

λ̂j,1 = 2σ̂j

√

2η log(n)

n

is the threshold suggested by the expression (3.4) of λj with σ̂2
j = 2−jǫ2

∑

ℓ∈Ωj
|γ̂ℓ|−2. A second

estimator is given by first realigning the curves using the estimators of the shifts namely

f̂n,2 =

2j0−1∑

k=0

ĉj0,k,2φj0,k +

j1∑

j=j0

2j−1∑

k=0

β̂j,k,211{|β̂j,k,2|>λ̂j,2}ψj,k (5.8)

where β̂j,k,2 =
∑

ℓ∈Ωj
ψj,kℓ θ̂ℓ,2 and ĉj0,k,2 =

∑

ℓ∈Ωj0
φj0,kℓ θ̂ℓ,2 with

θ̂ℓ,2 =
1

n

n∑

m=2

cℓ,me
i2πℓτ̂m ,

and λ̂j,2 is a threshold whose choice would depend on the law of the β̂j,k,2’s. Studying the

consistency and the rate of convergence of the estimators f̂n,1 and f̂n,2 is a difficult task. Indeed
the results in Section 3 have been derived using the fact that the law of the wavelet coefficients
β̂j,k and ĉj0,k given by (3.2) is known which allows the calibration of the threshold λj in (3.4).

Thus, we simply suggest to take λ̂j,2 = λ̂j,1. Extending the asymptotic results of Section 3
remains a challenge that is beyond the scope of this paper. Moreover, the results of Theorems
4 and 5 suggest that the estimators f̂n,1 and f̂n,2 could be consistent by considering a double
asymptotic setting with n→ +∞ and ǫ→ 0 which is an interesting point of view for future work
that certainly leads to different minimax rates of convergence.

6 Numerical experiments

We compare our approach with the Procrustean mean which is a standard algorithm commonly
used to extract a mean pattern. The Procrustean mean is based on an alternative scheme between
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estimation of the shifts and averaging of back-transformed curves given estimated values of the
shifts parameters, see e.g [46], [27]. To be more precise it consists of an initialization step
f̂0 = 1

n

∑n
m=1 Ym which is the simple average of the observed curves that is taken as a first

reference mean pattern. Then, at iteration 1 ≤ i ≤ imax, it computes for all 1 ≤ m ≤ n
the estimators τ̂m,i of the m-th shift as τ̂m,i = arg minτ∈R ‖Ym(· + τ) − f̂i−1‖2 and then takes

f̂i(x) = 1
n

∑n
m=1 Ym(x + τ̂m,i) as a new reference mean pattern. This is repeated until the

estimated reference curve does not change, and usually the algorithm converges in a few steps
(we took imax = 3). In all simulations, we used the wavelet toolbox Wavelab [7] and the WaveD
algorithm developed by [39] for fast deconvolution with Meyer wavelets.

6.1 Shift estimation by gradient descent

Let us denote by ∇Mn(τ ) ∈ R
n the gradient of Mn(τ ) at τ ∈ R

n. This gradient is simple to
compute as for m = 1, . . . , n:

∂

∂τm
Mn(τ ) = − 2

n

∑

|ℓ|≤ℓ0
ℜ



2iπℓcℓ,me
2iℓπτm




1

n

n∑

q=1

cℓ,qe2iℓπτq









In practice, to estimate the shifts, the criterion Mn(τ ) is minimized by the following gradient
descent algorithm with the constraint that τ1 = −∑n

m=2 τm:

Initialization : let τ
0 = 0 ∈ R

n, δ0 = 1
‖∇Mn(τ 0)‖ , M(0) = Mn(τ

0), and set p = 0.

Step 2 : let τ
new = τ

p − δp∇Mn(τ
p) and τnew1 = −∑n

m=2 τ
new
m .

Let M(p + 1) = Mn(τ
new).

While M(p + 1) > M(p) do

δp = δp/κ, and τ
new = τ

p − δp∇Mn(τ
m), with τnew1 = −

n∑

m=2

τnewm ,

and set M(p + 1) = Mn(τ
new).

End while
Then, take τ

p+1 = τ
new.

Step 3 : if M(p) −M(p + 1) ≥ ρ(M(1) −M(p + 1)) then set p = p + 1 and return to Step 2,
else stop the iterations, and take τ̂ = τ

p+1.

In the above algorithm, ρ > 0 is a small stopping parameter and κ > 1 is a parameter to
control the choice of the adaptive step δp.

6.2 Estimation with an unknown density g

For the mean pattern f to recover, we consider the four tests functions shown in Figures 1a-4a.
Then, we simulate n = 200 randomly shifted curves with shifts following a Laplace distribution

g(x) = 1√
2σ

exp
(

−
√

2 |x|
σ

)

with σ = 0.1. Gaussian noise with a moderate variance (different to

that used in the Laplace distribution) is then added to each curve. A subsample of 10 curves is
shown in Figures 1b- 4b for each test function, and the average of the observed curves, referred to
as the direct mean in what follows, is displayed in Figures1c- 4c. Note this gives a poor estimator
of the mean pattern.

The Fourier coefficients of the density g are given by γℓ = 1
1+2σ2π2ℓ2

which corresponds to a
degree of ill-posedness ν = 2. An estimator γ̂ℓ of γℓ can be computed as explained in Section 5
using the gradient descent algorithm described in Section 6.1. In our simulations we took the
arbitrary choice ℓ0 = 3 for the frequency cut-off which gives satisfactory results in the numerical
experiments.
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To compute the threshold λ̂j,1 = λ̂j,2 used in the definition of f̂n,1 and f̂n,2 (see Section 5)
one has to estimate ǫ2. This is done by taking ǫ̂2 = 1

n

∑n
m=1 ǫ̂

2
m, where the variance ǫ2m of the

noise for the m-th curve is easily estimated using the wavelet coefficients at the finest resolution
level. Note that such thresholds are quite simple to compute using the Fast Fourier Transform
and the fact that the set of frequencies Ωj can be easily obtained using WaveLab. Finally, we

have found that choosing η between 1 and 2 to compute λ̂j,1 gives quite satisfactory results.
Then, we took j0 = 3 ≈ log2(log(n)), but the choice j1 ≈ 1

2ν+1 log2(
n

log(n)) is obviously too
small. So in our simulations, j1 is chosen to be the maximum resolution level allowed by the
discretization i.e. j1 = log2(N) − 1 = 7. For each test function, the estimators f̂n,1 , f̂n,2 are
displayed in Figures 1(d)(e) -4(d)(e). The Procrustean mean is displayed is Figures 1(f) -4(f).
One can see that the results are rather satisfactory for f̂n,1 and the Procrustean mean. Clearly

the best results are given by the estimator f̂n,2 which gives very good estimates of the function
f particularly for functions with isolated singularities such as the Blocks and Bumps functions
in Figures 3 and 4 . It should be noted that these results are obtained in the case of an unknown
density g which shows the quality of the procedure proposed in Section 5 to estimate the shifts
and the γℓ’s. For reasons of space a detailed simulation study is not given, but it has been
found that the good performances of the wavelet-based estimator remain consistent across other
standard test signals.
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Figure 1: Wave function. (a) Mean pattern f , (b) Sample of 10 curves out of n = 200, (c) Direct
mean, Deconvolution by wavelet thresholding with (d) f̂n,1 and (e) f̂n,2, (f) Procrustean mean

7 Conclusions and future work

This paper makes a connection between mean pattern estimation and the statistical analysis of
inverse problems for a very simple model with shifted curves. A natural extension would be to
consider more complex deformations in SIM models such as the homothetic shifted regression
model proposed in [45], or the rigid deformation model for images considered in [6]. The results
obtained on the non-consistency of the estimation of the shifts can be elaborated in future work on
deformable models for signal and image analysis. In particular, it would be interesting to obtain
similar results for more general deformation parameters in SIM models. Another interesting
question in such models is whether one can estimate an unknown mean pattern consistently even
if it is impossible to construct consistent estimators for the deformation parameters such as the
random shifts in model (1.4).

Another promising approach would be to consider a double asymptotic setting with n→ +∞
and ǫ → 0 to study the consistency and rate of convergence for estimators of the mean pattern
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Figure 2: HeaviSine function. (a) Mean pattern f , (b) Sample of 10 curves out of n = 200, (c)
Direct mean, Deconvolution by wavelet thresholding with (d) f̂n,1 and (e) f̂n,2, (f) Procrustean
mean
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Figure 3: Blocks function. (a) Mean pattern f , (b) Sample of 10 curves out of n = 200, (c)
Direct mean, Deconvolution by wavelet thresholding with (d) f̂n,1 and (e) f̂n,2, (f) Procrustean
mean

and the unknown density g.

A Appendix section

In what follows C will denote a generic constant whose value may change from line to line.

Proof of Theorem 1: it follows immediately from Theorem 2 and Theorem 3. �

Proof of Proposition 1: let κℓ =
(
γ̃ℓ
γℓ

− 1
)

θℓ and ǫℓ,n = ǫ
γℓ

(
1
n

∑n
m=1 zℓ,m

)
for all ℓ ∈ Z. Then,
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Figure 4: Bumps function. (a) Mean pattern f , (b) Sample of 10 curves out of n = 200, (c)
Direct mean, Deconvolution by wavelet thresholding with (d) f̂n,1 and (e) f̂n,2, (f) Procrustean
mean

for a given filter λ, the risk R(f̂n,λ, f) can be written as

R(f̂n,λ, f) =
∑

ℓ∈Z

(λℓ − 1)2θ2
ℓ + E

[
λ2
ℓ |κℓ|2 + λ2

ℓ |ǫℓ,n|2
]
+ λℓ(λℓ − 1)E[θ̄ℓκℓ + θℓκ̄ℓ]

+λℓ(λℓ − 1)E[θℓǭℓ,n + θ̄ℓǫℓ,n] + λ2
ℓE[κ̄ℓǫℓ,n + κℓǭℓ,n].

Now using the fact that κℓ and ǫℓ,n are independent and that Eǫℓ,n = 0, we obtain that

R(f̂n,λ, f) =
∑

k∈Z

[

(λℓ − 1)2|θℓ|2 + λ2
ℓ |θℓ|2E

∣
∣
∣
∣

γ̃ℓ
γℓ

− 1

∣
∣
∣
∣

2

+
λ2
ℓ ǫ

2

n|γℓ|2

]

=
∑

ℓ∈Z

(λℓ − 1)2|θℓ|2 +
∑

ℓ∈Z

λ2
ℓ |θℓ|2

(
1

|γℓ|2
(

1

n
+
n− 1

n
γℓγ−ℓ

)

− 1

)

+
∑

ℓ∈Z

λ2
ℓ ǫ

2

n|γℓ|2

=
∑

ℓ∈Z

(λℓ − 1)2|θℓ|2 +
∑

ℓ∈Z

λ2
ℓ

n

[

|θℓ|2
(

1

|γℓ|2
− 1

)

+
ǫ2

|γℓ|2
]

,

which completes the proof. �

Proof of Proposition 2: from Proposition 1 it follows that

R(f̂n,λM , f) =
∑

|ℓ|>Mn

|θℓ|2 +
1

n

∑

|ℓ|≤Mn

(

|θℓ|2
(

1

|γℓ|2
− 1

)

+
ǫ2

|γℓ|2
)

By assumption f ∈ Hs(A), which implies that there exists two positive constants C1 and C2

not depending on f and n such that for all sufficiently large n,
∑

|ℓ|>Mn
|θℓ|2 ≤ C1M

−2s
n and

1
n

∑

|ℓ|≤Mn
|θℓ|2 ≤ C2n

−1. Now, given that g satisfies Assumption (1), it follows that there
exists a positive constants C3 not depending on f and n such that for all sufficiently large

n, 1
n

∑

|ℓ|≤Mn

|θℓ|2+ǫ2
|γℓ|2 ≤ C3n

−1M2ν+1
n . Hence the result immediately follows from the choice

Mn ∼ n
1

2s+2ν+1 , which completes the proof. �
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For the proof of Propositions 3 and 5, let us remark that that β̂j,k − βj,k = Z1 + Z2 with

Z1 =
∑

ℓ∈Ωj

ψj,kℓ θℓ(
γ̃ℓ
γℓ

− 1) and Z2 = ǫ
∑

ℓ∈Ωj

ψj,kℓ
γℓ

ηℓ. (A.1)

Under Assumption 2, G(x) =
∑

m∈Z
g(x + m), exists for all x ∈ [0, 1] and is a bounded

density. Throughout the proof we use the following lemma whose proof is straightforward:

Lemma 1 Let h ∈ L2([0, 1]) be a 1-periodic function on R. Then,
∫

R
h(x)g(x)dx =

∫ 1
0 h(x)G(x)dx.

Proof of Proposition 3: first note that since |ψj,kℓ | ≤ 2−j/2 and Ωj ⊂ [−2j+2c0,−2jc0] ∪
[2jc0, 2

j+2c0], see [26], it follows that #{Ωj} ≤ 4π2j and that under Assumption 1, |γℓ|−2 ∼ 22jν

for all ℓ ∈ Ωj. This implies that there exists a constant C > 0 such that

∑

ℓ∈Ωj

|ψ
j,k
ℓ

γℓ
|2 ≤ C22jν and

∑

ℓ∈Ωj

|ψ
j,k
ℓ

γℓ
| ≤ C2j(ν+1/2). (A.2)

Then, we need the following lemma which shows that the Fourier coefficients θℓ =
∫ 1
0 e

−2iℓπxf(x)dx
are uniformly bounded for all f ∈ Bs

p,q(A).

Lemma 2 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s − 1/p + 1/2 > 0 and A > 0. Then, there exists a
constant A′ > 0 such that for all f ∈ Bs

p,q(A) and all ℓ ∈ Z, |θℓ| ≤ A′.

Proof : since |φj0,kℓ | ≤ 2−j0/2 and |ψj,kℓ | ≤ 2−j/2 one can remark using Cauchy-Schwarz inequality
that for any j0 ≥ 0

|θℓ| ≤
2j0−1∑

k=0

|cj0,k||φj0,kℓ | +
+∞∑

j=j0

2j−1∑

k=0

|βj,k||ψj,kℓ |

≤





2j0−1∑

k=0

|cj0,k|2




1/2

+
+∞∑

j=j0





2j−1∑

k=0

|βj,k|2




1/2

Now using the inequality
(∑m

r=1 |ar|2
)1/2 ≤ m(1/2−1/p)+ (

∑m
r=1 |ar|p)

1/p for ℓp-norm in R
m it

follows that |θℓ| ≤ 2j0(1/2−1/p)+
(
∑2j0−1

k=0 |cj0,k|p
)1/p

+
∑+∞

j=j0
2j(1/2−1/p)+

(
∑2j−1

k=0 |βj,k|p
)1/p

.

Since f ∈ Bs
p,q(A), one has that

(
∑2j−1

k=0 |βj,k|p
)1/p

≤ A2−j(s+1/2−1/p) and
(
∑2j0−1

k=0 |cj0,k|p
)1/p

≤
A which implies that |θℓ| ≤ A2j0(1/2−1/p)+ + A

∑+∞
j=j0

2−j(s+1/2−1/p−(1/2−1/p)+). Taking for in-
stance j0 = 0 completes the proof since by assumption s+ 1/2 − 1/p > 0. �

An upper bound for E|β̂j,k−βj,k|2 (the proof to control E|ĉj0,k− cj0,k|2 follows from the same

arguments): from the decomposition (A.1) it follows that E|β̂j,k − βj,k|2 ≤ 2E|Z1|2 + 2E|Z2|2.
Since ηℓ are iid NC (0, 1/n), the bound (A.2) implies that

E|Z2|2 ≤ C
22jν

n
. (A.3)

Then, let us write Z1 = 1
n

∑n
m=1(Wm−EWm) withWm = hj,k(τm) and hj,k(τ) =

∑

ℓ∈Ωj

ψj,k
ℓ θℓ

γℓ
e−i2πℓτ

for τ ∈ R. By independence of the τm’s, one has that E|Z1|2 ≤ 1
nE|W1|2. Applying Lemma 1

with h = hj,k and since the density G is bounded, it follows that

E|W1|2 =

∫

R

|hj,k(τ)|2g(τ)dτ =

∫ 1

0
|hj,k(τ)|2G(τ)dτ

≤ C

∫ 1

0
|hj,k(τ)|2dτ ≤ C

∑

ℓ∈Ωj

|ψj,kℓ |2|θℓ|2
|γℓ|2

(A.4)
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where the last inequality follows from Parseval’s relation. Then, using the bound (A.2) and
Lemma 2, inequality (A.4) implies that there exists a constant C such that for all f ∈ Bs

p,q(A)

EZ2
1 ≤ C

1

n

∑

ℓ∈Ωj

|ψj,kℓ |2
|γℓ|2

≤ C
22jν

n
, (A.5)

Hence using the bounds (A.3) and (A.5), it follows that there exists a constant C such that for

all f ∈ Bs
p,q(A), E|β̂j,k − βj,k|2 ≤ C 22jν

n .

An upper bound for E|β̂j,k − βj,k|4: from the decomposition (A.1) it follows that E|β̂j,k −
βj,k|4 ≤ C(E|Z1|4+E|Z2|4). As Z2 is a centered Gaussian variable with variance 1

nǫ
2
∑

ℓ∈Ωj
|ψ

j,k
ℓ
γℓ

|2 ≤
C 22jν

n , one has that

E|Z2|4 ≤ C
2j4ν

n2
. (A.6)

Then, remark that Z1 = 1
n

∑n
m=1 Ym with Ym =

∑

ℓ∈Ωj

ψj,k
ℓ θℓ

γℓ
(e−i2πℓτm − γℓ), and recall the

so-called Rosenthal’s inequality for moment bounds of iid variables [44]: if X1, . . . ,Xn are iid
random variables such that EXj = 0, EX2

j 6 σ2, there exists a positive constant C such that

E|∑n
j=1Xj/n|4 6 C(σ4/n2 + E|X1|4/n3).

Now remark that EYm = 0, and arguing as previously for the control of E|W1|2, see equation
(A.4), it follows that E|Ym|2 ≤ C22jν where C is constant not depending on f . Then, remark
that

E|Y1|4 ≤ C

(∫

R

|hj,k(τ)|4g(τ)dτ + |βjk|4
)

with hj,k(τ) =
∑

ℓ∈Ωj

ψj,kℓ θℓ
γℓ

e−i2πℓτ ,

and that ∫

R

|hj,k(τ)|4g(τ)dτ ≤ sup
τ∈R

{|hj,k(τ)|2}
∫

R

|hj,k(τ)|2g(τ)dτ

Note that using (A.2) and Lemma 2, it follows that |hj,k(τ)| ≤
∑

ℓ∈Ωj

|ψj,k
ℓ ||θℓ|
|γℓ| ≤ C

∑

ℓ∈Ωj

|ψj,k
ℓ |

|γℓ|
≤ C2j(ν+1/2) uniformly for f ∈ Bs

p,q(A). Then, arguing as for the control of E|W1|2, see equation

(A.4), one has that
∫

R
|hj,k(τ)|2g(τ)dτ ≤ C22jν , which finally implies that E|Y1|4 ≤ C2j(4ν+1),

since |βjk| ≤ C uniformly for f ∈ Bs
p,q(A). Then, using Rosenthal’s inequality, it follows that

there exists a constant C such that for all f ∈ Bs
p,q(A)

E|Z1|4 ≤ C(
2j4ν

n2
+

2j(4ν+1)

n3
), (A.7)

which completes the proof for the control of E|β̂j,k − βj,k|4 using (A.6) and (A.7). �

A.1 Proof of Proposition 4 and Theorem 2

First let us prove the following proposition:

Proposition 5 Let f ∈ L2([0, 1]), n ≥ 1 and j ≥ 0. Suppose that g satisfies Assumption 2. For
0 ≤ k ≤ 2j − 1 and θℓ =

∫ 1
0 f(x)e−i2πℓxdx, define

σ2
j = 2−jǫ2

∑

ℓ∈Ωj

|γℓ|−2, V 2
j = ‖g‖∞2−j

∑

ℓ∈Ωj

|θℓ|2
|γℓ|2

and δj = 2−j/2
∑

ℓ∈Ωj

|θℓ|
|γℓ|

.

with ‖g‖∞ = supx∈R{g(x)}. Let t > 0, then,

P



|β̂j,k − βj,k| ≥ 2max



σj

√

2t

n
,

√

2V 2
j t

n
+ δj

t

3n







 ≤ 2 exp(−t).
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Proof of Proposition 5: let u > 0, and remark that from the decomposition (A.1) it follows

P

(

|β̂j,k − βj,k| ≥ u
)

≤ P(|Z1| ≥ u/2) + P(|Z2| ≥ u/2)

Recall that the ηℓ’s are iid NC (0, 1/n). Hence, Z2 is a centered Gaussian variable with variance

1
nǫ

2
∑

ℓ∈Ωj
|ψ

j,k
ℓ
γℓ

|2 ≤ 1
nσ

2
j , with σ2

j = 2−jǫ2
∑

ℓ∈Ωj
|γℓ|−2, which implies that (see e.g. [34]) for any

t > 0

P(|Z2| ≥ σj

√

2t

n
) ≤ 2 exp(−t) (A.8)

By definition, γ̃ℓ = 1
n

∑n
m=1 e

−i2πℓτm , and thus Z1 = 1
n

∑n
m=1(Wm − EWm) with Wm =

∑

ℓ∈Ωj

ψj,k
ℓ θℓ

γℓ
e−i2πℓτm . Remark that Wm are random variables bounded by δj = 2−j/2

∑

ℓ∈Ωj

|θℓ|
|γℓ| .

Moreover, using Lemma 1 with h = hj,k(τ) =
∑

ℓ∈Ωj

ψj,k
ℓ θℓ

γℓ
e−i2πℓτ for τ ∈ R it follows that

E|W1|2 =

∫

R

|hj,k(τ)|2g(τ)dτ ≤ ‖G‖∞
∑

ℓ∈Cj

|ψj,kℓ |2|θℓ|2
|γℓ|2

≤ V 2
j ,

where V 2
j = ‖g‖∞2−j

∑

ℓ∈Cj

|θℓ|2
|γℓ|2 , since |ψj,kℓ | ≤ 2−j/2 and ‖g‖∞ = ‖G‖∞. Hence, from Bern-

stein’s inequality it follows that for any t > 0 (see e.g Proposition 2.9 in [34])

P



|Z1| ≥

√

2V 2
j t

n
+ δj

t

3n



 ≤ 2 exp(−t). (A.9)

Taking u = 2max

(

σj

√
2t
n ,

√
2V 2

j t

n + δj
t

3n

)

for t > 0 concludes the proof of Proposition 5. �

Proposition 5 would suggest to take level-dependent thresholds of the form

λ∗j,k = λ∗j = 2max



σj

√

2η log(n)

n
,

√

2ηV 2
j log(n)

n
+ δj

η log(n)

3n



 (A.10)

for some constant η > 0. The first term in the maximum (A.10) is the classical universal threshold
with heteroscedastic variance σ2

j which corresponds to an upper bound of the variance of the

Gaussian term ǫ
∑

ℓ∈Ωj

ηl
γℓ

in the expression of β̂j,k. However, the second term in the maximum

(A.10) depends on the modulus of the unknown Fourier coefficients θℓ, and thus the thresholds
λ∗j cannot be used in practice.

Fortunately, the computation of the threshold λ∗j,k can be simplified using the following

arguments. Since there exists two constants C1, C2 such that for all ℓ ∈ Ωj, C12
j ≤ ℓ ≤ C22

j ,
and since lim|ℓ|→+∞ θℓ = 0 uniformly for f ∈ Bs

p,q(A) it follows that as j → +∞

V 2
j = ‖g‖∞2−j

∑

ℓ∈Ωj

|θℓ|2
|γℓ|2

= o



2−j
∑

ℓ∈Ωj

|γℓ|−2



 = o
(
σ2
j

)
.

Also, if f ∈ Bs
p,q(A) then

∑

ℓ∈Ωj
|θℓ|2 = o(1) as j → +∞, and thus by Cauchy-Schwarz inequality,

then as j → +∞

δj = 2−j/2
∑

ℓ∈Ωj

|θℓ|
|γℓ|

≤ 2−j/2




∑

ℓ∈Ωj

|θℓ|2




1/2 


∑

ℓ∈Ωj

|γℓ|−2





1/2

= o (σj) ,
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which finally implies that λ∗j = o (λj) as j → +∞ where λj = 2σj

√
2η log(n)

n . Hence if one

chooses j0 to be slowly growing with n (e.g. j0 = log(log(n))), or avoid thresholding at very
low resolution levels, then the threshold λj can be used instead of λ∗j whose computation would
require an estimator of the |θℓ|’s.

Combining Propositions 3 and 5, the above remarks on the thresholds λj and λ∗j , and by
arguing as in the proof of Theorem 1 in [26], then Proposition 4 and Theorem 2 follow. �

A.2 Proof of Theorem 3

Let us fix a resolution j ≥ 0 whose choice will be discussed later on, and consider for any

η = (ηi)i∈{0...2j−1} ∈ {±1}2j
the function fj,η defined as fj,η = γj

∑2j−1
i=0 ηkψj,k, where γj =

c2−j(s+1/2), and c is a positive constant satisfying c ≤ A which implies that fj,η ∈ Bs
p,q(A). For

some 0 ≤ i ≤ 2j − 1 and η ∈ {±1}2j
, define also the vector ηi ∈ {±1}2j

with components equal
to those of η except the ith one.

Let ψj,k ⋆ g(x) =
∫

R
ψj,k(x − u)g(u)du. By Parseval’s relation, one has that ‖ψj,k ⋆ g‖2 =

∑

ℓ∈Ωj
|ψj,kℓ |2|γℓ|2. Hence, under Assumption 1 of a polynomial decay for γℓ and using the fact

that |ψj,k| ≤ 2−j/2 for Meyer wavelets (see [26]) it follows that there exists a constant C such
that ‖ψj,k ⋆ g‖2 ≤ C2−2jν .

A.2.1 Asymptotic settings

We set the resolution j = j(n) to be the largest integer satisfying 2j(n) ≤ n
1

2s+2ν+1 . However, to
simplify the presentation, the dependency of j on n is dropped in what follows. The definition
of fj,η, γj and the bound ‖ψj,k ⋆ g‖2 ≤ C2−2jν thus imply that

γj = O(n−
s+1/2

2s+2ν+1 ) and ‖fj,η‖2 = O(n−
2s

2s+2ν+1 ),

‖fj,η ⋆ g‖2 = ‖γj
∑

k

ηk(ψj,k ⋆ g)‖2 = O
(

n
−2s−2ν
2s+2ν+1

)

,

‖(fj,η − fj,ηi) ⋆ g‖2 = ‖2γjηi(ψj,i ⋆ g)‖2 = O
(
γ2
j 2

−2jν
)

= O
(
n−1

)
.

From the above equations, we can thus conclude that n‖(fj,η−fj,ηi)⋆g‖2 = O (1) , but note that
the term n‖fj,η ⋆ g‖2 does not converge to 0. At last, observe that by assumption s > 2ν + 1
which implies that n‖fj,η ⋆ g‖3 → 0, n‖(fj,η − fj,ηi) ⋆ g‖‖fj,η‖‖fj,η ⋆ g‖ → 0 and n‖fj,η‖3 → 0.

A.2.2 Likelihood ratio

Let F (Y ) be real valued and bounded measurable function of the n trajectories Y = (Y1, . . . , Yn).
Because of the independence of the τi’s and the Wi’s, we have that

Ef [F (Y )] =

∫

Rn

Ef,W [F (Y )|τ1 = t1, . . . , τn = tn] g(t1)dt1 . . . g(tn)dtn,

where Ef denotes the expectation with respect to the law of Y = (Y1, . . . , Yn) when f is the true
hypothesis, and Ef,W is used to denote expectation only with respect to law of the Brownian
motions W1, . . . ,Wn where the shifts are fixed and f is the true hypothesis. Now using the
classical Girsanov formula it follows that for any function h ∈ L2([0, 1])

Ef [F (Y )] =

∫

Rn

Eh,W [F (Y )|τ1 = t1, . . . , τn = tn] Λn(f, h)g(t1)dt1 . . . g(tn)dtn

= Eh [F (Y )Λn(f, h)]

where Λn(f, h) is the following likelihood ratio

Λn(f, h) =
n∏

i=1

exp

(∫ 1

0
(f(x− τi) − h(x− τi))dYi(x) +

1

2
‖h‖2 − 1

2
‖f‖2

)

.
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In what follows, f0 is used to denote the hypothesis f ≡ 0.

A.2.3 Technical Lemmas

Given n arbitrary trajectories Y1, . . . Yn from model (1.4), we define Eτ

(
Λn(fj,ηi , f0)

)
as the

expectation of the likelihood ratio with respect to the law of the random shifts, namely

Eτ

(
Λn(fj,ηi , f0)

)
=

∫

Rn

n∏

i=1

e

∫ 1

0
(f(x− τi) − h(x− τi))dYi(x) +

1

2
‖h‖2 − 1

2
‖f‖2

g(τ1) . . . g(τn)dτ1 . . . dτn.

Lemma 3 Suppose for some constants λ > 0 and π0 > 0 and all sufficiently large n we have
that

Pfj,η

(

Eτ

(
Λn(fj,ηi , f0)

)

Eτ (Λn(fj,η, f0))
≥ e−λ

)

≥ π0, (A.11)

for all fj,η and all i ∈ {0 . . . 2j − 1}. Then, there exists a positive constant C, such that for all

sufficiently large n and any estimator f̂n

max
η∈{±1}2j

Efj,η
‖f̂n − fj,η‖2 ≥ Cπ0e

−λ2jγ2
j

Proof of Lemma 3 : our proof is inspired by the proof of Lemma 2.10 in [22]. For this let
Ijk = [ k

2j ,
k+1
2j ] and arguing as in [22] it follows that for any estimator f̂n

max
η∈{±1}2j

Efj,η
‖f̂n − fj,η‖2 ≥ 2−2j

2j−1∑

k=0

∑

η|ηk=1

Efj,η

[
∫

Ij,k

|f̂n − fj,η|2

+Λn(fj,ηk , fj,η)

∫

Ij,k

|f̂n − fj,ηk |2
]

.

Let Z(Y ) =
[∫

Ij,k
|f̂n − fj,η|2 + Λn(fj,ηk , fj,η)

∫

Ij,k
|f̂n − fj,ηk |2

]

and remark that

Efj,η
[Z(Y )] = Ef0,W

∫

Rn

[

Λn(fj,η, f0)

∫

Ij,k

|f̂n − fj,η|2

+Λn(fj,ηk , f0)

∫

Ij,k

|f̂n − fj,ηk |2
]

g(τ1)dτ1 . . . g(τn)dτn.

Now, since under the hypothesis f0 the trajectories Y1, . . . , Yn do not depend on the random
shifts τ1, . . . , τn it follows that f̂n does not depend on the shifts τ1, . . . , τn as it is by definition
a measurable function with respect to the sigma algebra generated by Y1, . . . , Yn. This implies
that for any δ > 0

Efj,η
[Z(Y )] = Ef0,W

[

Eτ (Λn(fj,η, f0))

∫

Ij,k

|f̂n − fj,η|2

+Eτ

(
Λn(fj,ηk , f0)

)
∫

Ij,k

|f̂n − fj,ηk |2
]

≥ Ef0,W

[

Eτ (Λn(fj,η, f0)) δ
211

R

Ij,k
|f̂n−fj,η|2>δ2

ff

+Eτ

(
Λn(fj,ηk , f0)

)
δ211

R

Ij,k
|f̂n−fj,ηk |2>δ2

ff

]

.
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Now, remark that

(
∫

Ij,k

|f̂n − fj,η|2
)1/2

+

(
∫

Ij,k

|f̂n − fj,ηk |2
)1/2

≥
(
∫

Ij,k

|fj,η − fj,ηk |2
)1/2

≥ 2γj

(
∫

Ij,k

|ψjk|2
)1/2

,

and let us argue as in the proof of Lemma 2 in [47] to a find a lower bound for
∫

Ij,k
|ψjk|2.

By definition, see Section 3, ψj,k(x) = 2j/2
∑

i∈Z
ψ∗(2j(x + i) − k) where ψ∗ is the Meyer

wavelet over R used to construct ψ. A change of variable shows that
∫

Ij,k
|ψjk(x)|2dx =

∫ 1
0

∣
∣
∑

i∈Z
ψ∗(x+ 2ji)

∣
∣2 dx which implies that

∫

Ij,k
|ψjk(x)|2dx ≥

∫ 1
0 |ψ∗(x)|2 dx−∑

i∈Z∗

∫ 1
0

∣
∣ψ∗(x+ 2ji)

∣
∣2 dx.

Now as ψ∗ has a fast decay, it follows that there exists a constant A > 0 such that |ψ∗(x)| ≤ A
1+x2 .

Thus,
∫

Ij,k
|ψjk(x)|2dx ≥

∫ 1
0 |ψ∗(x)|2 dx−A22−2j

∑

i∈Z∗ i−2. Hence, it follows that there exists a

constant ρ > 0 such that
(∫

Ij,k
|ψjk|2

)1/2
≥ ρ for any k, and all j sufficiently large.

Hence if one takes δ = 2ργj it follows that

11

R

Ij,k
|f̂n−fj,η|2>δ2

ff ≥ 11

R

Ij,k
|f̂n−fj,ηk |2≤δ2

ff,

which yields

Efj,η
[Z(Y )] ≥ δ2Ef0,W

[

Eτ (Λn(fj,η, f0)) min

(

1,
Eτ

(
Λn(fj,ηk , f0)

)

Eτ (Λn(fj,η, f0))

)]

= δ2Ef0

[

Λn(fj,η, f0)min

(

1,
Eτ

(
Λn(fj,ηk , f0)

)

Eτ (Λn(fj,η, f0))

)]

= δ2Efj,η

[

min

(

1,
Eτ

(
Λn(fj,ηk , f0)

)

Eτ (Λn(fj,η, f0))

)]

,

and arguing as in the proof of Lemma 2.10 in [22] completes the proof. �

Now remark that under the hypothesis f = fj,η, then each Yi is given by dYi(x) = fj,η(x−αi)dx+
dWi(x) where each αi is the true random shift of the ith trajectory. Thus, under this hypothesis,

we obtain Eτ (Λn(fj,η, f0)) =
∏n
i=1

∫

R
g(τi)e

[
R 1
0 fj,η(x−τi)fj,η(x−αi)dx+fj,η(x−τi)dWi(x)− 1

2
‖fj,η‖2]dτi, and

Eτ

(
Λn(fj,ηi , f0)

)
=

∏n
i=1

∫

R
g(τi)e

h

R 1
0
f

j,ηi(x−τi)fj,η(x−αi)dx+fj,ηi (x−τi)dWi(x)− 1
2
‖f

j,ηi‖2
i

dτi.Using the
two expressions above, we now study the condition (A.11).

Lemma 4 Following the choices of j(n) and γj(n) given in our algebraic setting, there exists
λ > 0 and π0 > 0 such that for all sufficiently large n

Pfj,η

(

Eτ

(
Λn(fj,ηi , f0)

)

Eτ (Λn(fj,η, f0))
≥ e−λ

)

≥ π0.

Proof of Lemma 4 : to obtain the required bound, we use several second order Taylor expan-
sions. From the Cauchy-Schwarz inequality, we have

e

∫ 1

0
fj,η(x− τi)fj,η(x− αi)dx

= 1 +

∫ 1

0
fj,η(x− τi)fj,η(x− αi)dx+ Op(‖fj,η‖4)
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A similar argument yields E

[∣
∣
∣

∫ 1
0 fj,η(x− τi)dWi(x)

∣
∣
∣

]

≤ ‖fj,η‖, and the Markov inequality used

with a second order expansion implies e

∫ 1

0
fj,η(x− τi)dWi(x)

= 1 +
∫ 1
0 fj,η(x − τi)dWi(x) +

1
2

[∫ 1
0 fj,η(x− τi)dWi(x)

]2
+Op(‖fj,η‖3). Looking now at the complete expression of Eτ (Λn(fj,η, f0)),

we obtain Eτ (Λn(fj,η, f0)) =
∏n
i=1

∫

R
g(τi)

[

1 +
∫ 1
0 fj,η(x− τi)fj,η(x− αi)dx+

∫ 1
0 fj,η(x− τi)dWi(x)

+1
2

[∫ 1
0 fj,η(x− τi)dWi(x)

]2
− 1

2‖fj,η‖2 + Op(‖fj,η‖3)

]

. The Fubini-type theorem for stochastic

integrals (see for instance [24], chapter 3, lemma 4.1) enables to write log Eτ (Λn(fj,η, f0)) =
∑n

i=1 log
[

1 +
∫ 1
0 (fj,η ⋆ g)(x)fj,η(x− αi)dx

+
∫ 1
0 (fj,η ⋆ g)(x)dWi(x)

1
2

∫

R

[∫ 1
0 fj,η(x− τi)dWi(x)

]2
g(τi)dτi − 1

2‖fj,η‖2

+Op(‖fj,η‖3)
]

Then, applying a classical expansion of the logarithm log(1 + z) = z− z2

2 +O(z3), we obtain

log EτΛn(fj,η, f0) = z − z2

2
+ Op(z

3)

=

n∑

i=1

∫ 1

0
(fj,η ⋆ g)(x)fj,η(x− αi)dx+

∫ 1

0
(fj,η ⋆ g)(x)dWi(x) (A.12)

+
1

2

n∑

i=1

∫

R

g(τi)

[∫ 1

0
fj,η(x− τi)dWi(x)

]2

− n

2
‖fj,η‖2 (A.13)

− 1

2

n∑

i=1

(∫ 1

0
(fj,η ⋆ g)(x)fj,η(x− αi)dx+

∫ 1

0
(fj,η ⋆ g)(x)dWi(x) (A.14)

+
1

2

∫

R

g(τi)

[∫ 1

0
fj,η(x− τi)dWi(x)

]2
)2

+ Op(n‖fj,η‖3). (A.15)

We first discuss on the size of the terms in equations (A.14) and (A.15). The first term in
(A.14) can be bounded using the Cauchy-Schwarz inequality

n∑

i=1

(∫ 1

0
(fj,η ⋆ g)(x)fj,η(x− αi)dx

)2

≤ n‖fj,η ⋆ g‖2‖fj,η‖2 = Op(n‖fj,η‖4).

But observe that
∑n

i=1 EWi

(∫ 1
0 (fj,η ⋆ g)(x)dWi(x)

)2
= n‖fj,η ⋆ g‖2 which does not converge to

0. Then, the Jensen inequality implies

∑n
i=1 EWi

(
∫

R
g(τi)

[∫ 1
0 fj,η(x− τi)dWi(x)

]2
dτi

)2

≤
∑n

i=1

∫

R
g(τi)EWi

[∫ 1
0 fj,η(x− τi)dWi(x)

]4
dτi = Op(n‖fj,η‖4).

Let us now study the terms derived from double products in equations (A.14) and (A.15), use

first that 2|ab| ≤ (a2 + b2) to get
∑n

i=1 Eαi,Wi

∣
∣
∣

∫ 1
0 (fj,η ⋆ g)(x)

fj,η(x− αi)dx|
∣
∣
∣
∣

∫

R
g(τi)

[∫ 1
0 fj,η(x− τi)dWi(x)

]2
dτi

∣
∣
∣
∣
= Op(n‖fj,η‖4).

The Cauchy-Schwarz and Jensen inequalities imply

∑n
i=1 EWi

∣
∣
∣

∫ 1
0 (fj,η ⋆ g)(x)dWi(x)

∣
∣
∣

∣
∣
∣
∣

∫

R
g(τi)

[∫ 1
0 fj,η(x− τi)dWi(x)

]2
dτi

∣
∣
∣
∣

= Op(n‖fj,η‖3).
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At last, the Cauchy-Schwarz and Jensen inequalities on the remaining double-product term imply
also

EW,α

∣
∣
∣
∑n

i=1

∫ 1
0 (fj,η ⋆ g)(x)fj,η(x− αi)dx

∫ 1
0 (fj,η ⋆ g)(x)dWi(x)

∣
∣
∣

= Op(n‖fj,η‖3).

All the above bounds enables us to write

L1 := log Λn(fj,η, f0)

=
∑n

i=1

∫ 1
0 (fj,η ⋆ g)(x)fj,η(x− αi)dx+

∫ 1
0 (fj,η ⋆ g)(x)dWi(x)

+1
2

∑n
i=1

∫

R
g(τi)

[∫ 1
0 fj,η(x− τi)dWi(x)

]2
− n

2‖fj,η‖2

−1
2

∑n
i=1

(∫ 1
0 (fj,η ⋆ g)(x)dWi(x)

)2
+ Op(n‖fj,η‖3).

In a similar way, we can also write

L2 := log Λn(fj,ηi , f0) =
∑n

i=1

∫ 1
0 (fj,ηi ⋆ g)(x)fj,η(x− αi)dx+

∫ 1
0 (fj,ηi ⋆ g)(x)dWi(x) + 1

2

∑n
i=1

∫

R
g(τi)

[∫ 1
0 fj,ηi(x− τi)dWi(x)

]2
− n

2 ‖fj,ηi‖2

−1
2

∑n
i=1

(∫ 1
0 (fj,ηi ⋆ g)(x)dWi(x)

)2
+ Op(n‖fj,η‖3).

For sake of simplicity, let us write h = fj,ηi − fj,η = 2ηiψj,i. The difference L = L2 −L1 can thus
be decomposed as

L =
n∑

i=1

∫ 1

0
(h ⋆ g)(x)[fj,η(x− αi) − fj,η ⋆ g(x)]dx (A.16)

+

n∑

i=1

∫ 1

0
(h ⋆ g)(x)(fj,η ⋆ g)(x)dx +

∫ 1

0
(h ⋆ g)(x)dWi(x) (A.17)

+
1

2

n∑

i=1

∫

R

g(τi)

[∫ 1

0
fj,ηi(x− τi)dWi(x)

]2

− n

2
‖fj,ηi‖2 (A.18)

− 1

2

n∑

i=1

∫

R

g(τi)

[∫ 1

0
fj,η(x− τi)dWi(x)

]2

+
n

2
‖fj,η‖2 (A.19)

− 1

2

[
n∑

i=1

(∫ 1

0
(fj,ηi ⋆ g)(x)dWi(x)

)2

− n‖fj,ηi ⋆ g‖2

]

(A.20)

− n

2
‖fj,ηi ⋆ g‖2 (A.21)

+
1

2

[
n∑

i=1

(∫ 1

0
(fj,η ⋆ g)(x)dWi(x)

)2

− n‖fj,η ⋆ g‖2

]

(A.22)

+
n

2
‖fj,η ⋆ g‖2 (A.23)

+ Op(n‖fj,η‖3). (A.24)

Bound for (A.16) : we use the classical Bennett’s inequality (see e.g [34]) for a sum of inde-
pendent and bounded variables. Define S =

∑n
i=1

∫ 1
0 (h⋆ g)(x)[fj,η(x−αi)− fj,η ⋆ g(x)]dx. From

Cauchy-Schwarz inequality, the random variables
∫ 1
0 (h ⋆ g)(x)fj,η(x − αi)dx are bounded by a

constant b such that b = ‖h ⋆ g‖‖fj,η‖. Let v and c to be defined as

v =

n∑

i=1

E

[∫ 1

0
(h ⋆ g)(x)fj,η(x− αi)dx

]2

and c = b/3.
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From the Cauchy Schwarz inequality, we have that v ≤ n‖fj,η‖2‖h ⋆ g‖2 and as h = fj,ηi − fj,η,
by using our algebraic settings in Section A.2.1, we observe that v → 0. The Bennett’s inequality
therefore implies that for any κ > 0:

P(|S| ≥ κ) ≤ 2e

−κ2

2(n‖fj,η‖2‖h ⋆ g‖2 + κ‖h ⋆ g‖‖fj,η‖/3) .
From our algebraic settings in Section A.2.1, one has thus that as n → ∞, the P(|S| ≥ κ) con-
verges to 0.

Bound for (A.18,A.19,A.20,A.22) : applying Lemma 5 (proved below) to the chi-square

statistics in the expressions (A.18,A.19) yields that for any κ > 0 P

(∣
∣
∣
∣
1
2

∑n
i=1

∫

R
g(τi)

[∫ 1
0 fj,ηi(x− τi)dWi(x)

]2
−

2e

−κ2

n‖fj,ηi‖4 + 2κ‖fj,ηi‖2
, and P

(∣
∣
∣
∣
1
2

∑n
i=1

∫

R
g(τi)

[∫ 1
0 fj,η(x− τi)dWi(x)

]2

−n
2 ‖fj,η‖2

∣
∣ ≥ κ

)
≤ 2e

−κ2

n‖fj,η‖4+2κ‖fj,η‖2 . Similarly we obtain for the chi-square statistics in (A.20,A.22)

that for any κ > 0 P

(∣
∣
∣
∣
1
2

[
∑n

i=1

(∫ 1
0 (fj,η ⋆ g)(x)dWi(x)

)2
−n‖fj,η ⋆ g‖2

]∣
∣ ≥ κ

)
≤ 2e

−κ2

n‖fj,η ⋆ g‖4 + 2κ‖fj,η ⋆ g‖2

and

P

(∣
∣
∣
∣
1
2

[
∑n

i=1

(∫ 1
0 (fj,ηi ⋆ g)(x)dWi(x)

)2
− n‖fj,ηi ⋆ g‖2

]∣
∣
∣
∣
≥ κ

)

≤ 2e

−κ2

n‖fj,ηi ⋆ g‖4 + 2κ‖fj,ηi ⋆ g‖2
. It follows from the algebraic setting in Section A.2.1 that

n‖fj,η‖4 → 0 and ‖fj,η‖2 → 0, as well as n‖fj,η ⋆ g‖4 → 0 and ‖fj,η ⋆ g‖2 → 0 and the above
probabilities converge to zero as n→ ∞.

Bound for (A.17,A.21,A.23) : using the first term of (A.17), simple computation shows that
yields

∑n
i=1

∫ 1
0 ((fj,ηi − fj,η) ⋆ g)(x)(fj,η ⋆ g)(x)dx − n

2 ‖fj,ηi ⋆ g‖2 + n
2 ‖fj,η ⋆ g‖2 = −n

2‖h ⋆ g‖2,
and we obtain from our algebraic settings that this term converges to 0 since n‖h ⋆ g‖2 → 0.
Moreover, the second term of (A.17) is the sum of n i.i.d centered normal variables and the
Cirelson-Ibragimov-Sudakov’s inequality [11] ensures that

P

(∣
∣
∣
∣
∣

n∑

i=1

∫ 1

0
(h ⋆ g)(x)dWi(x)

∣
∣
∣
∣
∣
≥ κ

)

≤ 2e

−κ2

2n‖h ⋆ g‖2
,

and thus the above probability goes to zero.

Bound for (A.24): from our algebraic settings in Section A.2.1, it follows immediately that
n‖fj,η‖3 → 0.

Hence, by combining all the above bounds, it follows that we have shown that L2 − L1 is
the sum of various terms which all converge to zero in probability or that are larger than some
negative constant with probability tending to one as n → +∞, which completes the proof of
Lemma 4. �

Lemma 5 Let g be a density function on R, and (Wi)i∈{1...n} be independent standard Brownian
motions on [0, 1]. Then, for any f ∈ L2([0, 1]) and α > 0,

P

(

1

2

n∑

i=1

∫

R

g(τi)

[∫ 1

0
f(t− τi)dWi(t)

]2

dτi −
n

2
‖f‖2 ≥ α

)

≤ e

−α2

n‖f‖4 + 2α‖f‖2
.
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Proof of Lemma 5 Consider ζn = 1
2

∑n
i=1

∫

R
g(τi)

[∫ 1
0 f(t− τi)dWi(t)

]2
dτi − n

2‖f‖2. We use a

Laplace transform technique to bound P(ζn ≥ α). For any
1

‖f‖2
> t > 0, we have by Markov’s

inequality

P(ζn ≥ α) ≤ e
−αt− n

2
‖f‖2t n∏

i=1

E






e
t/2

∫

R

g(τi)

(∫ 1

0
f(t− τi)dWi(t)

)2

dτi






.

We apply now Jensen’s inequality for the exponential function and the measure g(τ)dτ to obtain

P(ζn ≥ α) ≤ e
−αt− n

2
‖f‖2t n∏

i=1

∫

R

g(τi)E






e
t/2

(∫ 1

0
f(t− τi)dWi(t)

)2




dτi.

Remark that
(∫ 1

0 f(t− τi)dWi(t)
)2

follows a chi-square distribution whose Laplace transform

does not depend on τi and thus

P(ζn ≥ α) ≤ e
−αt− n

2
‖f‖2t− n

2
log

(
1 − t‖f‖2

)

.

Let α̃ =
α

n/2‖f‖2
and minimizing now the last bound with respect to t yield the optimal choice

t⋆ = α̃
1+α̃ . With this choice, we obtain P(ζn ≥ α) ≤ exp(

n

2
[log(1 + α̃) − α̃]). Now use the

classical bound log(1+u)−u ≤ −u2

2(1+u) , valid for all u ≥ 0, to get P(ζn ≥ α) ≤ exp(n2 × α̃2

2(1+α̃)) =

exp(
−α2

n‖f‖4 + 2α‖f‖2
), which completes the proof of the lemma. �

A.2.4 A lower bound for the minimax risk

By Lemma 3 and Lemma 4, it follows that there exists a constant C1 such that for all sufficiently
large n,

inf
f̂n

sup
f∈Bs

p,q(A)
E

∥
∥
∥f̂n − f

∥
∥
∥

2
≥ inf

f̂n

max
η∈{±1}2j

Efj,η
‖f̂n − fj,η‖2 ≥ C1n

− 2s
2s+2ν+1 ,

which completes the proof of Theorem 3. �

A.3 Proof of Theorem 4

For τ = (τ1, . . . , τn) ∈ T n define the criterionM(τ ) = 1
n

∑n
m=1

∑

|ℓ|≤ℓ0 |θℓe
2iℓπ(τm−τ∗m)− 1

n

∑n
q=1 θℓe

2iℓπ(τq−τ∗q )|2.
Then let us first prove the following lemma:

Lemma 6 Suppose that Assumption 4 hold. Then, the function τ 7→ M(τ ) has a unique min-
imum on T n at τ = τ̃ such that M(τ̃ ) = 0 given by τ̃ = (τ∗1 − τ̄n, τ

∗
2 − τ̄n, . . . , τ

∗
n − τ̄n), where

τ̄n = 1
n

∑n
m=1 τ

∗
m.

Proof of Lemma 6: by definition of M(τ ) it follows immediately that M(τ̃ ) = 0 and
thus τ̃ is a minimum since M(τ ) ≥ 0 for all τ ∈ T n. Now suppose that there exists τ ∈
T n such that M(τ ) = 0. This implies that for all m = 1, . . . , n and all −ℓ0 ≤ ℓ ≤ ℓ0
|θℓ|2|e2iℓπ(τm−τ∗m)− 1

n

∑n
q=1 e

2iℓπ(τq−τ∗q )|2 = 0. Since by assumption θ∗1 6= 0 it follows that for ℓ = 1,

|e2iπ(τm−τ∗m) − 1
n

∑n
q=1 e

2iπ(τq−τ∗q )|2 = 0 for all m = 1, . . . , n, which implies that e2iπ(τm−τ∗m) =

e2iπ(τq−τ∗q ) for all m, q = 1, . . . , n, since 1
n

∑n
q=1 e

2iπ(τq−τ∗q ) does not depend on m. This implies
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that τm − τ∗m = τ0 mod 1 for m = 2, . . . , n, where τ0 = τ1 − τ∗1 . By assumption τ1, τ
∗
1 belong to

T = [−1
4 ,

1
4 ] and thus |τ0| ≤ 1

2 . Hence, τm = τ∗m + τ0 for m = 1, . . . , n. Since
∑n

m=1 τm = 0 this
implies that τ0 = − 1

n

∑n
m=1 τ

∗
m and thus τm = τ̃m for m = 1, . . . , n which completes the proof. �

Let F : R
n−1 → R

n given by F (τ2, . . . , τn) = (−∑n
m=2 τm, τ2, . . . , τn)

t, and let M̃ : T n−1 →
R

+ defined by M̃(τ2, . . . , τn) = M(F (τ2, . . . , τn)).

Lemma 7 Let ∇2M̃(τ̃−1) denotes the Hessian of M̃ at τ̃−1 = (τ̃2, . . . , τ̃n), then ∇2M̃(τ̃−1) =
(

2
n

∑

|ℓ|≤ℓ0 |2πℓ|
2|θℓ|2

) (
In−1 + 11tn−111n−1

)
, where In−1 is the (n − 1) × (n − 1) identity ma-

trix and 11n−1 = (1, . . . , 1)t is the vector of R
n−1 with all entries equal to one. Moreover,

λmin(∇2M̃(τ̃−1)) = 2
n

∑

|ℓ|≤ℓ0 |2πℓ|
2|θℓ|2, where λmin(A) denotes the smallest eigenvalue of a

symmetric matrix A.

Proof of Lemma 7: first remark that for τ−1 = (τ2, . . . , τn) ∈ R
n−1 then ∇2M̃ (τ−1) =

∇F t∇2M(F (τ−1))∇F where ∇2M(F (τ−1)) denotes the Hessian of M at F (τ−1) and ∇F is
the gradient of F (n × (n − 1) matrix not depending on τ). Now, since for any τ ∈ T n

M(τ ) =
∑

|ℓ|≤ℓ0 |θℓ|
2

(

1 −
∣
∣
∣
1
n

∑n
q=1 e

2iℓπ(τq−τ∗q )
∣
∣
∣

2
)

it follows that for m = 2, . . . , n

∂

∂τm
M(τ ) = − 2

n2

∑

|ℓ|≤ℓ0
|θℓ|2ℜ



2iπℓe2iℓπ(τm−τ∗m)





n∑

q=1

e2iℓπ(τq−τ∗q )









where ℜ[z] denotes the real part of a complex number. Hence for m1 6= m2

∂2

∂τm2∂τm1

M(τ ) = − 2

n2

∑

|ℓ|≤ℓ0
|2πℓ|2|θℓ|2ℜ

[

e2iℓπ(τm1−τ∗m1
−τm2+τ∗m2

)
]

and for m1 = m2

∂2

∂τm1∂τm1

M(τ ) = − 2

n2

∑

|ℓ|≤ℓ0
|2πℓ|2|θℓ|2ℜ



1 − e2iℓπ(τm1−τ∗m1
)





n∑

q=1

e2iℓπ(τq−τ∗q )







 .

Then, remark that F (τ̃−1) = τ̃ . Hence by taking τm = τ̃m for m = 2, . . . , n in the above
formulas, it follows that

∇2M(τ̃ ) = ∇2M(F (τ̃−1)) =
2

n

∑

|ℓ|≤ℓ0
|2πℓ|2|θℓ|2

(

In −
1

n
11tn11n

)

, (A.25)

where In is the n×n identity matrix and 11n = (1, . . . , 1)t is the vector of R
n with all entries equal

to one. Hence the result follows from (A.25) and the equality ∇2M̃(τ̃−1) = ∇F t∇2M(F (τ̃−1))∇F ,
and the fact that the eigenvalues of the matrix A = In−1 + 11tn−111n−1 are n (of multiplicity 1)
and 1 (of multiplicity n− 2). �

Lemma 8 Suppose that Assumption 4 hold. Then, there exists a constant κ(f) > 0 (depending

on the shape function f) such that for all τ ∈ T n M(τ )−M(τ̃ ) ≥ κ(f)
(
∑

|ℓ|≤ℓ0 |θℓ|
2
) (

1
n

∑n
m=2(τm − τ̃m)2

)

Proof of Lemma 8: first remark that for any τ ∈ T n then M̃(τ−1) = M(F (τ )) where
τ−1 = (τ2, . . . , τn). Since τ̃ is a minimum of τ 7→ M(τ ), a second order Taylor expansion
implies that for all τ−1 in neighborhood V ⊂ T n−1 of τ̃−1

M(τ ) −M(τ̃ ) = M̃(τ−1) − M̃(τ̃−1)

= (τ−1 − τ̃−1)
t∇2M̃ (τ̃−1)(τ−1 − τ̃−1) + o(‖τ−1 − τ̃−1‖2).
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Using Lemma 7 and the above equation, it follows that there exists a universal constant 0 <
c1 < 1 and an open neighborhood Ṽ ⊂ V of τ̃ such that for all τ ∈ Ṽ

M(τ ) −M(τ̃ ) ≥ 2c1




∑

|ℓ|≤ℓ0
|2πℓ|2|θℓ|2





(

1

n

n∑

m=2

(τm − τ̃m)2

)

.

Now remark that under Assumption 4, M(τ ) > M(τ̃ ) = 0 for all τ ∈ T n\Ṽ by Lemma 6. Since

M(τ ) =
∑

|ℓ|≤ℓ0 |θℓ|
2

(

1 −
∣
∣
∣
1
n

∑n
q=1 e

2iℓπ(τq−τ∗q )
∣
∣
∣

2
)

the compactness of T n and the continuity of

τ 7→ M(τ ) implies that there exists a constant 0 < c2(f) < 1 (depending on Ṽ and thus on f)
such that for all τ ∈ T n\Ṽ , M(τ ) ≥

∑

|ℓ|≤ℓ0 |θℓ|
2 (1 − c2(f)) . Moreover since T is a compact

set it follows that there exists a universal constant c3 > 0 such that (τm − τ̃m)2 ≤ c3 for all
m = 2, . . . , n, which implies that for all τ ∈ T n

1
n

∑n
m=2(τm − τ̃m)2 ≤ c3. Therefore

M(τ ) −M(τ̃ ) ≥



c−1
3 (1 − c2(f))

∑

|ℓ|≤ℓ0
|θℓ|2





(

1

n

n∑

m=2

(τm − τ̃m)2

)

for all τ ∈ T n\Ṽ . Then the result follows by taking κ(f) = min(2c1, c
−1
3 (1 − c2(f))) and the

fact that
∑

|ℓ|≤ℓ0 |2πℓ|
2|θℓ|2 ≥ ∑

|ℓ|≤ℓ0 |θℓ|
2. �

Now recall that τ̂ = (τ̂1, . . . , τ̂n) = arg min
τ∈T n

Mn(τ ). Since τ̂ is a minimum of τ 7→Mn(τ )
and τ̃ is a minimum of τ 7→M(τ ) it follows that M(τ̂ ) −M(τ̃ ) ≤ 2 sup

τ∈T n |Mn(τ ) −M(τ )|.
Therefore Lemma 8 imply that

1

n

n∑

m=2

(τ̂m − τ̃m)2 ≤ 2



κ(f)




∑

|ℓ|≤ℓ0
|θℓ|2









−1

sup
τ∈T n

|Mn(τ ) −M(τ )|. (A.26)

Lemma 9 Let Z = sup
τ∈T n |Mn(τ ) −M(τ )|. Then for any t > 0

P




Z ≤




1 + 2




∑

|ℓ|≤ℓ0
|θℓ|2





1/2





(√

C(ǫ, n, ℓ0, t) + C(ǫ, n, ℓ0, t)
)




 ≥ 1 − exp(−t).

where C(ǫ, n, ℓ0, t) = ǫ2(2ℓ0 + 1) + 2ǫ2
√

2ℓ0+1
n t+ 2 ǫ

2

n t

Proof: remark that Mn(τ ) can be decomposed as Mn(τ ) = M(τ ) + L(τ ) +Q(τ ), where

L(τ ) = 2
ǫ

n

n∑

m=1

∑

|ℓ|≤ℓ0
ℜ







θℓe
2iℓπ(τm−τ∗m) − 1

n

n∑

q=1

θℓe
2iℓπ(τq−τ∗q )







zm,ℓe2iℓπτm − 1

n

n∑

q=1

zq,ℓe2iℓπτq









Q(τ ) =
ǫ2

n

n∑

m=1

∑

|ℓ|≤ℓ0

∣
∣
∣
∣
∣
∣

zm,ℓe
2iℓπτm − 1

n

n∑

q=1

zq,ℓe
2iℓπτq

∣
∣
∣
∣
∣
∣

2

By Cauchy-Schwarz inequality |L(τ )| ≤ 2
√

M(τ )
√

Q(τ ). Since M(τ ) ≤ ∑

|ℓ|≤ℓ0 |θℓ|
2 for all

τ ∈ T n one has that |L(τ )| ≤ 2
(
∑

|ℓ|≤ℓ0 |θℓ|
2
)1/2 √

Q(τ ), Therefore

sup
τ∈T n

|Mn(τ ) −M(τ )| ≤




1 + 2




∑

|ℓ|≤ℓ0
|θℓ|2





1/2





(
√

sup
τ∈T n

Q(τ ) + sup
τ∈T n

Q(τ )

)

, (A.27)
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Thus it suffices to derive a concentration inequality for sup
τ∈T n Q(τ ). For this remark that

Q(τ ) ≤ W1 for all τ ∈ T n, where W1 =
∑

|ℓ|≤ℓ0
ǫ2

n

∑n
m=1 |zm,ℓ|2. Then using a standard

concentration inequality for sum of χ2 variables (see e.g. [34]) one has that for any t >
0 P (sup

τ∈T n Q(τ ) ≥ C(ǫ, n, ℓ0, t)) ≤ P (W1 ≥ C(ǫ, n, ℓ0, t)) ≤ exp(−t). where C(ǫ, n, ℓ0, t) =

ǫ2(2ℓ0 + 1) + 2ǫ2
√

2ℓ0+1
n t+ 2 ǫ

2

n t. Therefore the result follows using inequality (A.27). �

From Lemma 9 and inequality (A.26) it follows that

P






1

n

n∑

m=2

(τ̂m − τ̃m)2 ≤
2 + 4

(
∑

|ℓ|≤ℓ0 |θℓ|
2
)1/2

κ(f)
(
∑

|ℓ|≤ℓ0 |θℓ|2
)

(√

C(ǫ, n, ℓ0, t) + C(ǫ, n, ℓ0, t)
)




 ≥ 1−exp(−t).

(A.28)

To complete the proof remark that 1
n

∑n
m=2(τ̂m−τ∗m)2 ≤ 2

(
1
n

∑n
m=2(τ̂m − τ̃m)2 +

(
1
n

∑n
m=1 τ

∗
m

)2
)

.

Since the τ∗m are i.i.d variables with zero mean and bounded by 1/4, Bernstein’s inequality (see
e.g. [34]) implies that for any t > 0 then

P

(∣
∣
∣
∣
∣

1

n

n∑

m=1

τ∗m

∣
∣
∣
∣
∣
≥

√

2σ2
g

t

n
+

t

12n

)

≤ 2 exp(−t), (A.29)

where σ2
g =

∫

T τ
2g(τ)dτ . Then Theorem 4 follows from inequalities (A.28) and (A.29). �

A.4 Proof of Theorem 5

To simplify the notations we write τm = τ∗m to denote the true shifts. Part of the proof is inspired
by general results on Van Tree inequalities in [20]. First let us considered the case where the shifts
τm,m = 1, . . . , n are fixed parameters to estimate and let τn = (τ1, . . . , τn). Recall that X =
(cm,ℓ)ℓ∈Z,m=1,...,n denote the set of observations taking values in the set X = C

∞×n. Then, the

likelihood of the random variableX is given by p(x|τn) = C
∏n
m=1

∏

ℓ∈Z
exp

{

− 1
2ǫ2

∣
∣cm,ℓ − θℓe

−i2πℓτm
∣
∣2
}

.

Therefore for m = 1, . . . , n

Eτ

(
∂

∂τm
log p(x|τn))

)

= 0, (A.30)

where for a function h(X) of the random variable X, Eτh(X) =
∫

X h(x)p(x|τn)dx. Then, for

m1 6= m2 one has that Eτ

(
∂

∂τm1
log p(x|τn) ∂

∂τm2
log p(x|τn)

)

= 0, and form1 = m2 Eτ

(
∂

∂τm1
log p(x|τn)

)2
=

ǫ−2
∑

ℓ∈Z
(2πℓ)2|θℓ|2.

Now assume that the shifts are i.i.d. random variables with density g(τ) satisfying Assump-
tion (6). Let τ̂n = τ̂n(X) denote any estimator of the shifts τn. Then define the following vectors
U and V = (V1, . . . , Vn)

′ in R
n as

U = τ̂n − τn and Vm =
∂

∂τm
[p(x|τn)gn(τn)]

1

p(x|τn)gn(τn)
for m = 1, . . . , n,

where gn(τ
n) =

∏n
m=1 g(τm). First remark that

E
(
U ′V

)
=

∫

X

∫

T n

n∑

m=1

(τ̂nm − τm)
∂

∂τm
[p(x|τn)gn(τn)]dτndx

=

∫

X

n∑

m=1

τ̂nm

(∫

T n

∂

∂τm
[p(x|τn)gn(τn)]dτn

)

dx

−
∫

X

n∑

m=1

(∫

T n

τm
∂

∂τm
[p(x|τn)gn(τn)]dτn

)

dx
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An integration by part and the fact that limτ→τmin
g(τ) = limτ→τmax g(τ) = 0 implies that

∫

T n
∂
∂τm

[p(x|τn)gn(τn)]dτn = 0. Using again an integration by part and Assumption 3 one has

that
∫

T n τm
∂
∂τm

[p(x|τn)gn(τn)]dτn = −
∫

T n p(x|τn)gn(τn)dτn. Therefore E (U ′V ) =
∑n

m=1

∫

T n

∫

X p(x|τn)gn(τn)
n. Now using Cauchy-Schwarz inequality it follows that n2 = (E (U ′V ))2 ≤ E (U ′U) E (V ′V ) .
Then remark that

E
(
U ′U

)
= E

n∑

m=1

(τ̂nm − τm)2 =

∫

X

∫

T n

(τ̂nm(x) − τm)2p(x|τn)gn(τn)dxdτ,

and

E
(
V ′V

)
= E

n∑

m=1

(
∂

∂τm
[log p(x|τn) + log gn(τ

n)]

)2

= E

n∑

m=1

(
∂

∂τm
log p(x|τn)

)2

+ E

n∑

m=1

(
∂

∂τm
log gn(τ

n)

)2

,

since by using (A.30) it follows that E

(
∑n

m=1
∂
∂τm

log p(x|τn) ∂
∂τm

log gn(τ
n)
)

=
∑n

m=1

∫

T n

(∫

X

(
∂
∂τm

log p(x|τn)
)

0. Hence

E
(
V ′V

)
= nǫ−2

∑

ℓ∈Z

(2πℓ)2|θℓ|2 + E

n∑

m=1

(
∂

∂τm
log g(τm)

)2

= nǫ−2
∑

ℓ∈Z

(2πℓ)2|θℓ|2 + n

∫

T

(
∂

∂τ
log g(τ)

)2

g(τ)dτ,

which completes the proof using that n2 ≤ E (U ′U) E (V ′V ). �
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