223 research outputs found

    Способы повышения прочности алюмосиликатной керамики на основе сухарного глинистого сырья

    Get PDF
    Disrupting the CD40-CD40L co-stimulatory pathway reduces atherosclerosis and induces a stable atherosclerotic plaque phenotype that is low in inflammation and high in fibrosis. Therefore, inhibition of the CD40-CD40L pathway is an attractive therapeutic target to reduce clinical complications of atherosclerosis. The CD40-CD40L dyad is known to interact with other co-stimulatory molecules, to activate antigen-presenting cells (APC) and to contribute to T-cell priming and B-cell isotype switching. Besides their presence on T-cells and APCs, CD40 and CD40L are also present on macrophages, endothelial cells and vascular smooth muscle cells in the plaque, where they can exert pro-atherogenic functions. Moreover, recent progress indicates the involvement of neutrophil CD40, platelet CD40L and dendritic cell CD40 in atherogenesis. Since systemic CD40-CD40L modulation compromises host defense, more targeted interventions are needed to develop superior treatment strategies for atherosclerosis. We believe that by unravelling the cell-cell CD40-CD40L interactions, inhibition of cell-type specific (signalling components of) CD40(L) that do not compromise the patient's immune system, will become possible. In this review, we highlight the cell-type specific multi-functionality of CD40-CD40L signalling in atherosclerosi

    Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease

    Get PDF
    MicroRNAs (miRNAs) are short sequences of non-coding RNA that play an important role in the regulation of gene expression and thereby in many physiological and pathological processes. Furthermore, miRNAs are released in the extracellular space, for example in vesicles, and are detectable in various biological fluids, such as serum, plasma, and urine. Over the last years, it has been shown that miRNAs are crucial in the development of several cardiovascular diseases (CVDs). This review discusses the (patho)physiological implications of miRNAs in CVD, ranging from cardiovascular risk factors (i.e., hypertension, diabetes, dyslipidemia), to atherosclerosis, myocardial infarction, and cardiac remodeling. Moreover, the intriguing possibility of their use as disease-specific diagnostic and prognostic biomarkers for human CVDs will be discussed in detail. Finally, as several approaches have been developed to alter miRNA expression and function (i.e., mimics, antagomirs, and target-site blockers), we will highlight the miRNAs with the most promising therapeutic potential that may represent suitable candidates for therapeutic intervention in future translational studies and ultimately in clinical trials. All in all, this review gives a comprehensive overview of the most relevant miRNAs in CVD and discusses their potential use as biomarkers and even therapeutic targets

    The renewable energy and energy efficiency potential of Waitakere City : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Technology in Energy Management at Massey University

    Get PDF
    Electricity restrictions and blackouts have occurred in Waitakere City in the past and are likely to occur again in the future unless the city can become more self reliant by meeting, at least in part, the increasing energy requirements for what is one of the fastest growing cities in New Zealand. In this study the potentials for energy conservation, energy efficiency and renewable energy resources have been broadly quantified and assessed using desktop analysis of publicly available data for stationary final use energy systems (i.e. excluding transportation) within the geographical area of Waitakere City and adjoining waters. It was found that energy efficiency and energy conservation measures can consistently and predictably achieve overall energy savings and reduce daily and seasonal peak demand. The best renewable energy resource potential exists with solar and geothermal for heating applications and wave, offshore and inshore wind and tidal currents for electricity generation. There is very limited potential for hydro and bioenergy systems beyond what already exists. PV solar and land based wind power generation are currently only feasible for limited off-grid applications. This scoping study confirms the achievability of the vision expressed in Waitakere City Council's "Long Term Council Community Plan" (LTCCP) that by 2020 " Waitakere City will be an energy cell, not an energy sink. Air quality supports good health". A range of flagship projects have been identified to progress the achievement of this vision. Waitakere City Council can use this report as part of the development of a comprehensive energy management plan

    Angiopoietin-2 blocking antibodies reduce early atherosclerotic plaque development in mice

    Get PDF
    Objective: Angiopoietin-2 (Ang-2) blocking agents are currently undergoing clinical trials for use in cancer treatment. Ang-2 has also been associated with rupture-prone atherosclerotic plaques in humans, suggesting a role for Ang-2 in plaque stability. Despite the availability of Ang-2 blocking agents, their clinical use is still lacking. Our aim was to establish if Ang-2 has a role in atheroma development and in the transition of subclinical to clinically relevant atherosclerosis. We investigated the effect of antibody-mediated Ang-2 blockage on atherogenesis after in a mouse model of atherosclerosis. Methods: Hypercholesterolemic (low-density lipoprotein receptor(-/-) apolipoprotein B-100/100) mice were subjected to high-cholesterol diet for eight weeks, one group with and one group without Ang-2 blocking antibody treatment during weeks 4-8. To enhance plaque development, a peri-adventitial collar was placed around the carotid arteries at the start of antibody treatment. Aortic root, carotid arteries and brachiocephalic arteries were analyzed to evaluate the effect of Ang-2 blockage on atherosclerotic plaque size and stable plaque characteristics. Results: Anti-Ang-2 treatment reduced the size of fatty streaks in the brachiocephalic artery (-72%, p <0.05). In addition, antibody-mediated Ang-2 blockage reduced plasma triglycerides (-27%, p <0.05). In contrast, Ang-2 blockage did not have any effect on the size or composition (collagen content, macrophage percentage, adventitial microvessel density) of pre-existing plaques in the aortic root or collar-induced plaques in the carotid artery. Conclusions: Ang-2 blockage was beneficial as it decreased fatty streak formation and plasma triglyceride levels, but had no adverse effect on pre-existing atherosclerosis in hypercholesterolemic mice. (C) 2015 The Authors. Published by Elsevier Ireland Ltd.Peer reviewe

    High-sensitive Troponin T assay for the diagnosis of acute myocardial infarction: An economic evaluation

    Get PDF
    __Abstract__ Background: Delayed diagnosis and treatment of Acute Myocardial Infarction (AMI) has a major adverse impact on prognosis in terms of both morbidity and mortality. Since conventional cardiac Troponin assays have a low sensitivity for diagnosing AMI in the first hours after myocardial necrosis, high-sensitive assays have been developed. The aim of this study was to assess the cost effectiveness of a high-sensitive Troponin T assay (hsTnT), alone or combined with the heart-type fatty acid-binding protein (H-FABP) assay in comparison with the conventional cardiac Troponin (cTnT) assay for the diagnosis of AMI in patients presenting to the hospital with chest pain.Methods: We performed a cost-utility analysis (quality adjusted life years-QALYs) and a cost effectiveness analysis (life years gained-LYGs) based on a decision analytic model, using a health care perspective in the Dutch context and a life time time-horizon. The robustness of model predictions was explored using one-way and probabilistic sensitivity analyses.Results: For a life time incremental cost of 30.70 Euros, use of hsTnT over conventional cTnT results in gain of 0.006 Life Years and 0.004 QALY. It should be noted here that hsTnT is a diagnostic intervention which costs only 4.39 Euros/test more than the cTnT test. The ICER generated with the use of hsTnT based diagnostic strategy comparing with the use of a cTnT-based strategy, is 4945 Euros per LYG and 7370 Euros per QALY. The hsTnT strategy has the highest probability of being cost effective at thresholds between 8000 and 20000 Euros per QALY. The combination of hsTnT and h-FABP strategy's probability of being cost effective remains lower than hsTnT at all willingness to pay thresholds.Conclusion: Our analysis suggests that hsTnT assay is a very cost effective diagnostic tool relative to conventional TnT assay. Combination of hsTnT and H-FABP does not offer any additional economic and health benefit over hsTnT test alone

    A Novel Plaque Enriched Long Noncoding RNA in Atherosclerotic Macrophage Regulation (PELATON)

    Get PDF
    Objective: Long noncoding RNAs (lncRNAs) are an emergent class of molecules with diverse functional roles, widely expressed in human physiology and disease. Although some lncRNAs have been identified in cardiovascular disease, their potential as novel targets in the prevention of atherosclerosis is unknown. We set out to discover important lncRNAs in unstable plaque and gain insight into their functional relevance. Approach and Results: Analysis of RNA sequencing previously performed on stable and unstable atherosclerotic plaque identified a panel of 47 differentially regulated lncRNAs. We focused on LINC01272, a lncRNA upregulated in unstable plaque previously detected in inflammatory bowel disease, which we termed PELATON (plaque enriched lncRNA in atherosclerotic and inflammatory bowel macrophage regulation). Here, we demonstrate that PELATON is highly monocyte- and macrophage-specific across vascular cell types, and almost entirely nuclear by cellular fractionation (90%-98%). In situ hybridization confirmed enrichment of PELATON in areas of plaque inflammation, colocalizing with macrophages around the shoulders and necrotic core of human plaque sections. Consistent with its nuclear localization, and despite containing a predicted open reading frame, PELATON did not demonstrate any protein-coding potential in vitro. Functionally, knockdown of PELATON significantly reduced phagocytosis, lipid uptake and reactive oxygen species production in high-content analysis, with a significant reduction in phagocytosis independently validated. Furthermore, CD36, a key mediator of phagocytic oxLDL (oxidized low-density lipoprotein) uptake was significantly reduced with PELATON knockdown. Conclusions: PELATON is a nuclear expressed, monocyte- and macrophage-specific lncRNA, upregulated in unstable atherosclerotic plaque. Knockdown of PELATON affects cellular functions associated with plaque progression

    Разработка аппаратно-программного комплекса для УЗ томографии на основе С – развертки

    Get PDF
    Статья посвящена УЗ томографии, которая является передовым, активно развивающимся методом визуализации внутренней структуры материалов и изделий. Одним из направлений УЗ томографии является визуализация, реализованная на основе С – сканирования.The article is devoted to ultrasonic tomography, which is an advanced, actively developing method for visualizing the internal structure of materials and products. One of the directions of ultrasonic tomography is visualization, realized on the basis of C - scan

    Numerical solution of gas dynamics equations on the computational meshes with arbitrary number of cell faces using high order spatial accuracy schemes

    Get PDF
    In the present study methodology and algorithm of numerical solution of gas dynamics equations on the computational meshes with arbitrary number of cell faces using high order spatial accuracy schemes is presented. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows to use the computational meshes with arbitrary number of cell faces

    Leukocyte Bim deficiency does not impact atherogenesis in ldlr -/- mice, despite a pronounced induction of autoimmune inflammation

    Get PDF
    Proapoptotic Bcl-2 family member Bim is particularly relevant for deletion of autoreactive and activated T and B cells, implicating Bim in autoimmunity. As atherosclerosis is a chronic inflammatory process with features of autoimmune disease, we investigated the impact of hematopoietic Bim deficiency on plaque formation and parameters of plaque stability. Bim−/− or wild type bone marrow transplanted ldlr−/− mice were fed a Western type diet (WTD) for 5 or 10 weeks, after which they were immunophenotyped and atherosclerotic lesions were analyzed. Bim−/− transplanted mice displayed splenomegaly and overt lymphocytosis. CD4+ and CD8+ T cells were more activated (increased CD69 and CD71 expression, increased interferon gamma production). B cells were elevated by 147%, with a shift towards the pro-atherogenic IgG-producing B2 cell phenotype, resulting in a doubling of anti-oxLDL IgG1 antibody titers in serum of bim−/− mice. Bim−/− mice displayed massive intraplaque accumulation of Ig complexes and of lesional T cells, although this did not translate in changes in plaque size or stability features (apoptotic cell and macrophage content). The surprising lack in plaque phenotype despite the profound pro-atherogenic immune effects may be attributable to the sharp reduction of serum cholesterol levels in WTD fed bim−/− mice
    corecore