229 research outputs found

    The international global navigation satellite systems service (IGS): development and achievements

    Get PDF
    Since 21 June 1992 the International GPS Service (IGS), renamed International GNSS Service in 2005, produces and makes available uninterrupted time series of its products, in particular GPS observations from the IGS Global Network, GPS orbits, Earth orientation parameters (components x and y of polar motion, length of day) with daily time resolution, satellite and receiver clock information for each day with different latencies and accuracies, and station coordinates and velocities in weekly batches for further analysis by the IERS (International Earth Rotation and Reference Systems Service). At a later stage the IGS started exploiting its network for atmosphere monitoring, in particular for ionosphere mapping, for troposphere monitoring, and time and frequency transfer. This is why new IGS products encompass ionosphere maps and tropospheric zenith delays. This development became even more important when more and more space-missions carrying space-borne GPS for various purposes were launched. This article offers an overview for the broader scientific community of the development of the IGS and of the spectrum of topics addressed today with IGS data and product

    The celestial mechanics approach: application to data of the GRACE mission

    Get PDF
    The celestial mechanics approach (CMA) has its roots in the Bernese GPS software and was extensively used for determining the orbits of high-orbiting satellites. The CMA was extended to determine the orbits of Low Earth Orbiting satellites (LEOs) equipped with GPS receivers and of constellations of LEOs equipped in addition with inter-satellite links. In recent years the CMA was further developed and used for gravity field determination. The CMA was developed by the Astronomical Institute of the University of Bern (AIUB). The CMA is presented from the theoretical perspective in (Beutler etal. 2010). The key elements of the CMA are illustrated here using data from 50 days of GPS, K-Band, and accelerometer observations gathered by the Gravity Recovery And Climate Experiment (GRACE) mission in 2007. We study in particular the impact of (1) analyzing different observables [Global Positioning System (GPS) observations only, inter-satellite measurements only], (2) analyzing a combination of observations of different types on the level of the normal equation systems (NEQs), (3) using accelerometer data, (4) different orbit parametrizations (short-arc, reduced-dynamic) by imposing different constraints on the stochastic orbit parameters, and (5) using either the inter-satellite ranges or their time derivatives. The so-called GRACE baseline, i.e., the achievable accuracy of the GRACE gravity field for a particular solution strategy, is established for the CM

    The celestial mechanics approach: theoretical foundations

    Get PDF
    Gravity field determination using the measurements of Global Positioning receivers onboard low Earth orbiters and inter-satellite measurements in a constellation of satellites is a generalized orbit determination problem involving all satellites of the constellation. The celestial mechanics approach (CMA) is comprehensive in the sense that it encompasses many different methods currently in use, in particular so-called short-arc methods, reduced-dynamic methods, and pure dynamic methods. The method is very flexible because the actual solution type may be selected just prior to the combination of the satellite-, arc- and technique-specific normal equation systems. It is thus possible to generate ensembles of substantially different solutions—essentially at the cost of generating one particular solution. The article outlines the general aspects of orbit and gravity field determination. Then the focus is put on the particularities of the CMA, in particular on the way to use accelerometer data and the statistical information associated with i

    Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis

    Get PDF
    In recent years, several studies have demonstrated the sensitivity of Global Navigation Satellite System (GNSS) station time series to displacements caused by atmospheric pressure loading (APL). Different methods to take the APL effect into account are used in these studies: applying the corrections from a geophysical model on weekly mean estimates of station coordinates, using observation-level corrections during data analysis, or solving for regression factors between the station displacement and the local pressure. The Center for Orbit Determination in Europe (CODE) is one of the global analysis centers of the International GNSS Service (IGS). The current quality of the IGS products urgently asks to consider this effect in the regular processing scheme. However, the resulting requirements for an APL model are demanding with respect to quality, latency, and—regarding the reprocessing activities—availability over a long time interval (at least from 1994 onward). The APL model of Petrov and Boy (J Geophys Res 109:B03405, 2004) is widely used within the VLBI community and is evaluated in this study with respect to these criteria. The reprocessing effort of CODE provides the basis for validating the APL model. The data set is used to solve for scaling factors for each station to evaluate the geophysical atmospheric non-tidal loading model. A consistent long-term validation of the model over 15years, from 1994 to 2008, is thus possible. The time series of 15years allows to study seasonal variations of the scaling factors using the dense GNSS tracking network of the IGS. By interpreting the scaling factors for the stations of the IGS network, the model by (2004) is shown to meet the expectations concerning the order of magnitude of the effect at individual stations within the uncertainty given by the GNSS data processing and within the limitations due to the model itself. The repeatability of station coordinates improves by 20% when applying the effect directly on the data analysis and by 10% when applying a post-processing correction to the resulting weekly coordinates compared with a solution without taking APL into accoun

    Die Entwicklung eines neuen, umweltgerechten Produktionsprozesses für Terbinafin

    Get PDF
    An efficient process for the production of terbinafine is described. Starting from (E)-I,3-dichloropropene, neohexene, and N-methyl-( I-naphthylmethyl)amine and using a palladium-catalyzed coupling methodology, terbinafine is produced exclusively as (E)-isomer in a convergent manner. The new process avoids the very toxic and nasty starting materials acrolein and phosphorus pentachloride used in the old process

    Combination of GNSS and SLR observations using satellite co-locations

    Get PDF
    Satellite Laser Ranging (SLR) observations to Global Navigation Satellite System (GNSS) satellites may be used for several purposes. On one hand, the range measurement may be used as an independent validation for satellite orbits derived solely from GNSS microwave observations. On the other hand, both observation types may be analyzed together to generate a combined orbit. The latter procedure implies that one common set of orbit parameters is estimated from GNSS and SLR data. We performed such a combined processing of GNSS and SLR using the data of the year 2008. During this period, two GPS and four GLONASS satellites could be used as satellite co-locations. We focus on the general procedure for this type of combined processing and the impact on the terrestrial reference frame (including scale and geocenter), the GNSS satellite antenna offsets (SAO) and the SLR range biases. We show that the combination using only satellite co-locations as connection between GNSS and SLR is possible and allows the estimation of SLR station coordinates at the level of 1-2cm. The SLR observations to GNSS satellites provide the scale allowing the estimation of GNSS SAO without relying on the scale of any a priori terrestrial reference frame. We show that the necessity to estimate SLR range biases does not prohibit the estimation of GNSS SAO. A good distribution of SLR observations allows a common estimation of the two parameter types. The estimated corrections for the GNSS SAO are 119mm and −13mm on average for the GPS and GLONASS satellites, respectively. The resulting SLR range biases suggest that it might be sufficient to estimate one parameter per station representing a range bias common to all GNSS satellites. The estimated biases are in the range of a few centimeters up to 5cm. Scale differences of 0.9ppb are seen between GNSS and SL

    Improved antenna phase center models for GLONASS

    Get PDF
    Thanks to the increasing number of active GLONASS satellites and the increasing number of multi-GNSS tracking stations in the network of the International GNSS Service (IGS), the quality of the GLONASS orbits has become significantly better over the last few years. By the end of 2008, the orbit RMS error had reached a level of 3-4cm. Nevertheless, the strategy to process GLONASS observations still has deficiencies: one simplification, as applied within the IGS today, is the use of phase center models for receiver antennas for the GLONASS observations, which were derived from GPS measurements only, by ignoring the different frequency range. Geo++ GmbH calibrates GNSS receiver antennas using a robot in the field. This procedure yields now separate corrections for the receiver antenna phase centers for each navigation satellite system, provided its constellation is sufficiently populated. With a limited set of GLONASS calibrations, it is possible to assess the impact of GNSS-specific receiver antenna corrections that are ignored within the IGS so far. The antenna phase center model for the GLONASS satellites was derived in early 2006, when the multi-GNSS tracking network of the IGS was much sparser than it is today. Furthermore, many satellites of the constellation at that time have in the meantime been replaced by the latest generation of GLONASS-M satellites. For that reason, this paper also provides an update and extension of the presently used correction tables for the GLONASS satellite antenna phase centers for the current constellation of GLONASS satellites. The updated GLONASS antenna phase center model helps to improve the orbit qualit

    Beispiel für die Evolution der Synthese eines Entwicklungsproduktes: Herstellung des als 5 HT2C/2B-Receptor-Antagonisten wirksamen Indolo-naphthyridin-Derivates SDZ SER-082 in enantiomerenreiner Form

    Get PDF
    cis-4,5,7a,8,9,10,11,11a-Octahydro-7H-10-methylindolo[1,7-bc][2,6]naphthyridine (rac-4) (SDZ SER-082) is a selective and potent 5-HT2C/2B receptor antagonist, exerting weak affinity towards the 5-HT2A receptor site. The compound 4 was found to be a potential development candidate in several CNS indications. The key step in the initial synthesis was the photocyclization of the indolyl tetrahydropyridino-carbamic acid ethyl ester 1 to afford the cis/trans-naphthyridine 2/3. This process turned out to be inefficient for a scale-up. Three alternative synthetic routes A, B and C are discussed: The 'Imino-Diels-Alder' reaction applying indoline/formaldehyde/cyclopentadiene (route A) and the intramolecular Heck cyclization of 7-bromo-2,3-dihydro-1-[(1,2,5,6-tetrahydro-1-methyl-4-pyridyl)-carbonyl]-1H -indole (10) (route B) were surpassed in their synthetic efficiency by the Friedel-Crafts cyclization of 4-(2,3-dihydroindole-1-carbonyl)-1-methylpiperidin-3-one (16) (route C), followed by reduction to give rise to the racemic naphthyridine rac-4. It was subjected to resolution by applying a kg scale repetitive chromatography on a chiral stationary phase to give (+)-(7aS,11aR)-4 in over 90% yield and 99.9% enantiomeric purity
    corecore