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Abstract Gravity field determination using the measure-
ments of Global Positioning receivers onboard low Earth
orbiters and inter-satellite measurements in a constellation of
satellites is a generalized orbit determination problem involv-
ing all satellites of the constellation. The celestial mechanics
approach (CMA) is comprehensive in the sense that it encom-
passes many different methods currently in use, in particular
so-called short-arc methods, reduced-dynamic methods, and
pure dynamic methods. The method is very flexible because
the actual solution type may be selected just prior to the com-
bination of the satellite-, arc- and technique-specific normal
equation systems. It is thus possible to generate ensembles
of substantially different solutions—essentially at the cost
of generating one particular solution. The article outlines the
general aspects of orbit and gravity field determination. Then
the focus is put on the particularities of the CMA, in partic-
ular on the way to use accelerometer data and the statistical
information associated with it.

Keywords Celestial mechanics · Orbit determination ·
Global gravity field modeling · CHAMP · GRACE

1 Problem description and overview

This article has the focus on the theoretical foundations of the
so-called celestial mechanics approach (CMA). Applications
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of the CMA, in particular to the GRACE mission, may be
found in Beutler et al. (2010) and Jäggi et al. (2010b).

The determination of the Earth’s global gravity field using
the data of space missions is nowadays either based on

1. the observations of spaceborne Global Positioning (GPS)
receivers onboard low Earth orbiters (LEOs) (see
Reigber et al. 2004),

2. or precise inter-satellite distance monitoring of a close
satellite constellation using microwave links (combined
with the measurements of the GPS receivers on all space-
crafts involved) (see Tapley et al. 2004),

3. or on gradiometer measurements realized by three pairs
of three-dimensional accelerometers onboard a LEO
measuring the complete gravitational tensor of the Earth
along the satellite’s trajectory (combined with the obser-
vations of the onboard GPS receiver) (see Drinkwater
et al. 2006).

The CHAllenging Minisatellite Payload (CHAMP) mission
is generating the first kind of data set, the Gravity Recov-
ery And Climate Experiment (GRACE) mission the second
one, and the Gravity field and steady-state Ocean Circulation
Explorer (GOCE) mission the third one. The first type of data
is available for all three missions.

The gravity fields emerging from one of the above data
sets are often combined in a statistically correct way with
the solutions obtained from Satellite Laser Ranging (SLR)
and/or from ground-based or airborne gravimetry (see Förste
et al. 2008). We do not consider combinations of this kind
here, but focus on the contribution of the mentioned satellite
missions.

The above observational data are supported by the mea-
surements of accelerometers (Touboul et al. 1999), e.g.,
placed in the satellite’s center of mass, which give—as a
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function of time—biased and scaled values of the non-
gravitational accelerations acting on the satellites. The
measurements are performed in three orthogonal directions,
usually closely related to the radial (R), the out-of-plane (W ),
and the along-track component (S), which are associated
with the unit vectors er in the radial, eW in the out-of-plane,
and eS

.= eW × eR in the (approximate) along-track direc-
tions. Accelerometer bias parameters have to be set up and
estimated in the generalized orbit estimation process. One
should also solve for accelerometer scale parameters. These
parameters are, however, highly correlated with the once-
per-revolution dynamic parameters, which is why we usu-
ally do not solve for them. In order to refer the GPS- and
inter-satellite measurements to the satellites’ centers of mass,
the attitude of the satellite-fixed coordinate system has to be
oriented in the inertial system (using star-tracking cameras)
and the sensor offsets in the satellite-fixed coordinate system
have to be known.

The complexity of the parameter estimation problem may
be considerably reduced by not analyzing the original (phase
and code) GPS measurements in the gravity field estimation
process, but rather the LEOs’ so-called kinematic positions
(Švehla et al. 2004), using optionally parts of the variance–
covariance matrices, hereafter called simply covariance
matrices, associated with them. As the GPS-derived kine-
matic positions are not original measurements, but used
subsequently as observations in the parameter estimation
procedures, we also refer to them as pseudo-observations
or pseudo-measurements. Kinematic LEO orbits are derived
from the LEO receivers’ GPS code and phase measurements
using a precise point positioning (PPP) procedure (Zumberge
et al. 1997). More information is provided in Sect. 3.2.

Static “satellite-only” gravity fields based on long data
spans should be based on solutions not making use of infor-
mation other than that contained in the measurements. Com-
binations with other solutions on the normal equation system
(NEQ) level involving other techniques should be made after
the satellite-only solutions. This demand is “rather absolute”
and never can be really met, because one will, e.g., always
make use (and be it only for reasons of computation effi-
ciency) of a rather good a priori gravity field—meaning that
reasonable approximate values are used at least for the terms
up to degree n = 20. The dependency on the a priori gravity
field was studied in some detail in Jäggi et al. (2010b), where
the EGM96 (Lemoine et al. 1997) served as a priori field.
Virtually the same results were obtained when using a much
better a priori field. We are therefore confident that the CMA
meets the demand of “independency on the a priori gravity
field” to a great extent. As long as all coefficients set up in
the a priori field are also estimated in the subsequent param-
eter estimation procedure, the impact of the a priori gravity
field on the estimated field must be small—and should disap-
pear completely, if the solution is iteratively improved using

the estimated parameters as new a priori values in a second
iteration step. The dependency on many other background
models (e.g., tides) are much more problematic and difficult
to avoid.

The situation is different if the interest is on the time vary-
ing part of the gravity field using a rather short data span
(usually one month in the case of GRACE). There it may
make sense to generate solutions, which are based on an a
priori gravity field of high degree and order (e.g., with a cut-
off degree of n = 150–180, which was derived previously),
and to determine the gravity field parameters up to a modest
limiting degree only, e.g., between 20 and 60. The aspect of
extracting the time varying part of the gravity field is, how-
ever, not in the center of this article. Such a set-up to study
the impact of different solution strategies on the achievable
results is used in Beutler et al. (2010). Note, as well, that sev-
eral research centers determine monthly gravity fields from
GRACE up to degree 120 and that Liu et al. (2010) retrieved
temporal signals above degree 70 in monthly GRACE gravity
fields using filtering techniques.

The CMA has its roots in the Bernese GPS Software (Dach
et al. 2007), which was extensively used for determining the
orbits of Global Navigation Satellite Systems (GNSS). The
CMA was generalized to determine the orbits of LEOs by
Jäggi (2007) with special emphasis on the stochastic proper-
ties of the orbits. In recent years the CMA was further devel-
oped and used for gravity field determination. This article
represents the first consistent description of the CMA, the
key aspects of which are:

− The CMA is based on the foundations of celestial
mechanics. It is a package designed for orbit and for grav-
ity field determination, where the latter task is merely a
generalization of the former.

− The modularity of the CMA allows it to study or improve
individual contributions to a resulting orbit or gravity
field. It also may be used as an ideal tool for planning
future space missions (gravity field oriented or other).

− The use of kinematic positions derived from GPS,
together with the options to use either the full or only
the epoch-specific covariance matrices from PPP, is per-
fectly suited to study the quality of GPS-only orbits and
their contribution to gravity fields.

− The CMA is based not on stochastic, but on piecewise
deterministic equations of motion. With its capabilities to
set up pseudo-stochastic parameters (of different kinds)
with a dense spacing, the CMA orbits may be made close
relatives of solutions of stochastic differential equations.

The aspects of Celestial Mechanics relevant for gravity field
determination are described in Sect. 2. The CMA’s response
to these challenges may be found in Sect. 3. Section 4 reviews
different methods used for gravity field determination and
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puts them in relation to the CMA. Section 5 summarizes the
main findings and the conclusions emerging from this work.

2 Orbit and gravity field determination

Every procedure to determine the Earth’s gravity field using
space data has to be based on the foundations of celestial
mechanics. A static gravity field to be derived from the GOCE
mission seems to be an exception at first sight, because the
key instrument, the gradiometer, provides the gravitational
tensor along the satellite’s trajectories as in situ measure-
ments, which depend only weakly on the satellite’s orbital
motion. Due to the limited bandwidth of the gradiometer,
however, the lower degree harmonics are almost uniquely
determined by the orbital motion of the GOCE satellite (Pail
et al. 2006). Because of the low altitude of the satellite, the
gravity field derived from the GOCE GPS data alone should
already be of remarkable quality and resolution—and it has
to be combined in a consistent way with the results emerging
from the gradiometer.

Our procedure should be called more precisely “the
method to generate ensembles of orbits and gravity field solu-
tions fully exploiting the degrees of freedom offered by celes-
tial mechanics and using the power of applied mathematics
to generate the precise solutions in an efficient way”. As this
description is of the lengthy kind, we stick to the short title
“CMA”.

Before highlighting the essential elements of our method
in Sect. 3 we review the key characteristics of orbital motion
and of gravity field determination in general in this section.

2.1 Equations of motion and their solution

The geocentric position vector r(t) of a satellite’s center
of mass solves the so-called equations of motion for each
time argument t . These are usually written as second order,
non-linear ordinary differential equations based on Newton’s
principles and on his law of universal gravitation, amended by
corrections due to the special and general theories of relativ-
ity. The equations used today are often referred to as param-
eterized post-Newtonian equations (Seidelmann 1992). The
satellite’s position vector r(t) at any given epoch t is a partic-
ular solution of the equations of motion defined by the initial
position and velocity vectors r0

.= r(t0) and v0
.= ṙ(t0) at an

initial epoch t0. The initial position and velocity vectors are
also referred to as “initial state vector” (with six elements).
The initial state vector is defined by six quantities, e.g., the
initial osculating orbital elements. For a general discussion
of the orbit determination problem see Beutler (2005, Vol. 1,
Chapter 8).

In order to solve the parameter estimation problem, the
relationship between the observables (see Sect. 2.2) and the

parameters has to be linearized. Linearization implies for
our problems that each orbit (arc) involved is approximated
as a linear function of its defining parameters including those
dynamical parameters common to several or all orbits. In a
generic way a linearized orbit may be written as

r(t) .= r0(t) +
npar∑

i=1

∂r0(t)

∂pi
(pi − p0i ), (1)

where the a priori orbit (or “initial orbit” or “reference orbit”)
r0(t)

.= r(t; p01, p02, . . . , p0,npar ) is a function of time and
characterized by known approximate values p0i of the param-
eters pi , i = 1, 2, . . . , npar; the partial derivatives on the
righthand side should be understood as the partial deriva-
tives of the function r(t; p1, p2, . . . , pnpar ) w.r.t. the param-
eters pi , evaluated at pi = p0i ; npar is the number of orbit
parameters defining the orbit r(t). Whereas all methods are
based on a linearized representation of the unknown orbits as
a function of the parameters, one should clearly specify how
the reference orbits and the partial derivatives of the reference
orbits w.r.t. the parameters of different type are generated.

2.2 Observables and observations

Two classes of observations (measurements) should be dis-
tinguished in modern gravity field determination:

− Class I: observations measuring functions of the satel-
lites’ position and/or velocity vectors at particular
epochs,

− Class II: observations measuring (parts of) the force field
(or functions of the field) acting on the satellites at par-
ticular epochs.

The observed functions of the parameters are also referred to
as observables.

Kinematic positions derived from spaceborne GPS receiv-
ers and the K-Band range or range-rate Level 1b measure-
ments of the GRACE mission are typical representatives of
observations of Class I, accelerometer and gradiometer mea-
surements of Class II.

The observations actually used in the parameter adjust-
ment process may be the original measurements gained by
the satellites’ sensors or functions thereof. Often it is assumed
that the errors in the original measurements (e.g., the GPS
phase or the K-Band Level 1a range measurements) have
particularly simple statistical characteristics, e.g., indepen-
dent and normally distributed. It does not matter whether the
original measurements or functions thereof are analyzed in
the adjustment process—as long as the mathematical corre-
lations between the errors in the original measurements and
those analyzed are taken into account. If, e.g., the full covari-
ance matrix of the kinematic positions covering the entire

123



608 G. Beutler et al.

time span of data as a function of the GPS phase (and code)
observations is available and used in the adjustment process
(what is, however, usually not done), the results are the same
as if the orbits and/or the gravity fields would have been
estimated directly with the original observations. The same
remarks apply to the use of Level 1b ranges or range-rates
instead of the Level 1a ranges.

In the absence of Class II observations parameter estima-
tion is a straightforward affair. The observations are either
independent with known variances or they are linear combi-
nations of the original observations of Class I. In the former
case the weight matrix is diagonal, in the latter case fully
populated. The impact of the non-modeled parts of the force
field are treated as stochastic quantities by the adjustment
process, reflected by an enlarged root mean square (RMS)
error a posteriori (w.r.t. the known RMS error a priori) of
the Class I observations. Pure dynamic methods are usually
based on this procedure.

Properly taking into account the stochastic properties of
Class II observations is in practice less trivial, because the
observables of Class I are functions of the force field, as
well, i.e., also of the observations of Class II. It is, however,
in principle easy to set up a correct analysis involving both
classes of observations:

1. The observations of the force field have to be introduced
with their known statistical properties into the adjust-
ment process, i.e., in addition to the Class I observation
equations there is also one observation equation for each
measurement of Class II.

2. The impact of the observables of Class II on the obser-
vations of Class I has to be taken into account.

Let us outline the correct procedure using the Level 1a accel-
erometer observations a′

k of the GRACE mission as an exam-
ple. We assume that these measurements are independent
and of the same accuracy. In practice, the measurements
a′

k are filtered, resulting in a smoothed series ak0, which is
then used as the empirically given non-gravitational force
in the integration process. In order to analyze the structure
of the problem we skip the filtering process and assume that
the empirical non-gravitational forces are constant in the time
intervals [tk, tk+1] and directly given by the Level 1a data

ak0
.= a′

k, t ∈ [tk, tk+1], k = 1, 2, . . . . (2)

This view is statistically correct, because the use of the unfil-
tered data is equivalent to the use of the filtered data together
with the corresponding correct correlation matrix.

In order to take the statistical nature of the measurements
a′

k into account one must introduce the parameters �ak ,
standing for the difference between the true and the mea-
sured acceleration. The measurements thus may be written
as a′

k
.= ak0−�ak . The quantities �ak are normal parameters

of the adjustment process governed by the observation equa-
tion

�ak = 0, k = 1, 2, . . . . (3)

Assuming that the measurements a′
k are not correlated and

all have the same variance σ 2
a , the above measurements are

associated with the weights σ 2
0 /σ 2

a , where σ0 is the standard
deviation of the weight unit used in the adjustment.

The impact of the parameters �ak on the kinematic posi-
tions and inter-satellite distances has to be taken into account,
as well. This problem is, in principle, easily solved: the
dependency of the orbit on the parameters is described in
a generic way by Eq. (1), where the �ak are elements of the
parameter list. The position and/or velocity vectors are there-
fore also linear functions of the �ak corresponding to epochs
prior to the observation epoch. The same linear dependency
thus also holds for functions of these vectors.

The partial derivatives w.r.t. the �ak can be calculated,
without additional computational burden, as linear combina-
tions of the partial derivatives w.r.t. the six parameters defin-
ing the initial state vector and the partial derivative w.r.t. a
constant force in the direction considered. As the functional
dependency of the Class I observables on the satellite posi-
tions and velocities is known anyway for each time argument
t , it is also straightforward to model the influence of these
new parameters �ak on the Class I observables like range,
range-rate, etc. This completes the correct way of taking the
stochastic properties of the accelerometer measurements into
account. No problems of principle have been encountered.

The problem with this purist approach resides in the poten-
tially huge number of additional parameters associated with
it: when using accelerometer data with a 0.1 s spacing, one
ends up with 864,000 additional parameters in the daily
NEQs—definitely a hopeless affair. The problem can of
course be alleviated by taking into account the correlations
only over short time periods and by (pre-)eliminating the
parameters �ak of the short time intervals. There are ways
to do this efficiently.

The effort of taking into account the impact of Class II
on Class I observables becomes irrelevant, if their impact
on the Class I observables is much smaller than the Class
I RMS errors. For GRACE-like missions this requirement
obviously would have an impact on the stochastic properties
of the range and of the accelerometer observables.

2.3 An experiment applied to an ideal gravity mission

The following simulation illustrates that the above postulated
independence is not given for all observables of the GRACE
mission: a Keplerian orbit is perturbed by normally distrib-
uted, random accelerations a′

R,k, a′
S,k, a′

W,k in the
R-, S- and W -directions, which are constant in the time inter-
vals [tk, tk+1], k = 0, 1, 2, . . . , where tk+1 − tk = �tp =

123



The celestial mechanics approach: theoretical foundations 609

Fig. 1 Residuals in R-, S-,
W -directions of an orbit
perturbed by piecewise constant
accelerations (spacing of 0.1 s,
RMS = 10−10 m/s2) using
velocities (left) or positions
(right) as observations, both
without measurement noise
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0.1 s. An RMS error of σa = 10−10 m/s2 is assumed for these
normally distributed piecewise constant accelerations in the
three directions.

The components of the perturbed position or velocity vec-
tor are used as observations (without adding any additional
measurement noise) in a conventional least-squares process,
which assumes all Class 1 observables as independent and of
the same accuracy (weight matrix = identity matrix), to esti-
mate the orbit of a 6h-arc. The simulation represents a hypo-
thetical “super gravity field experiment”, which measures
each component of the two satellites’ position or velocity
vectors with infinite accuracy. Its only “weakness” resides
in the limited accuracy of the accelerometers. The six ini-
tial osculating elements and the unconstrained pulses in the
R-, S- and W -directions at 30- min intervals are the param-
eters of the orbit determination procedure. Figure 1 (left)
shows the residuals of the orbit determination experiment
using the velocity components as observations, and Fig. 1
(right) the residuals using the position components. Despite
the fact that the measurement noise of the components of the
velocity and position vectors was assumed to be zero in our
experiment, the RMS error a posteriori of the orbit determi-
nation (based, as mentioned, on a conventional least-squares
estimator) using the components of the velocity vector as
observations is of the order of 10−9 m/s, it is of the order of
10−6 m when using the components of the position vector.
Whether or not this accelerometer-induced noise on the Class
I observables can be ignored depends on the noise character-
istics of the Class I observables.

The results of the simulation experiment may be trans-
lated, to some extent, to the realities of the GRACE mission:
the GRACE accelerometer measurements—when perform-
ing at the promised nominal level—have an impact of the
kind illustrated by Fig. 1 on the components of the velocity
and the position vector, respectively. These small effects do
not matter at all when considering the impact on the GPS-
derived positions (we are speaking of position RMS errors
of few centimeters for the kinematic positions).

The accelerometers also have an impact of the order
of magnitude given by Fig. 1 (multiplied by

√
2) on the

inter-satellite range-rates and ranges. The RMS errors of the
order of 1–2×10−7 m/s for inter-satellite range-rates using
a K-Band link (derived by numerical differentiation from
ranges) between the satellites is still large compared to the
accelerometer-induced noise in Fig. 1 (left). We therefore
conclude that the impact of the stochastic properties of the
GRACE accelerometers on the velocity observable is neg-
ligible in terms of the RMS estimated by the least-squares
adjustment—provided the accelerometers perform as
claimed by Touboul et al. (1999). The situation is not so
clear for the range observable: Fig. 1 (right) indicates that
small accelerometer RMS errors of σa ≈ 10−10 m/s2 gener-
ate a systematic pattern in the range residuals of the order of
10−6 m. The impact of the accelerometer-induced noise on
the range observable is thus of the same order of magnitude
as the RMS of the Level 1b range measurements and should
be captured by methods described in the previous section.

The experiment performed in this section was based, as
stated initially, on simplifying assumptions. An in-depth anal-
ysis should not be based simply on a comparison of RMS
values of the involved observations, because of a possible
dependency of noise on frequency, but on the power spectral
densities of the range (or range-rate), the accelerometer, and
the GPS-related observables.

2.4 Primary and variational equations

The initial orbit r0(t) in Eq. (1) should be a sufficiently
good approximation of the “final” orbit r(t) (resulting in the
parameter estimation process) in order to justify the negli-
gence of the non-linear terms.

The initial orbit r0(t) is usually obtained by numerically
solving the equations of motion. The partial derivatives in
Eq. (1) solve the so-called variational equations (see
Sect. 3.7). As the number of parameters is counted in tens
of thousands in gravity field determination, it is important to
solve the variational equations efficiently.

In the context of parameter estimation the equations of
motion are called the primary equations. The primary equa-
tions have to be solved as accurately as needed, the actual
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requirements being dictated by the accuracy of the observa-
tions. When analyzing inter-satellite distances accurate to a
few microns, “as accurately as needed” translates into “as
accurately as possible” (see also Sect. 3.5).

2.5 Parameter estimation

Gravity field determination only makes sense, if the total
number of observations vastly exceeds the total number of
parameters. An estimation principle has to transform the
observation equations into a system of equations, where the
dimension equals the number of parameters. The method
of least-squares demands the sum of the weighted residual
squares to be minimum, which in turn implies that the partial
derivatives of this sum w.r.t. each parameter are zero. The
least-squares principle thus leads to a system of linear equa-
tions, the NEQs, the dimension of which equals the number of
parameters. For more information concerning least-squares
and other estimation principles we refer to Strang and Borre
(1997).

2.6 Arc, arc length

We refer to a satellite arc as the trajectory r(t) between time
limits tb ≤ t ≤ te, represented by one and the same initial
position and velocity vectors r0

.= r(t0) and v0
.= ṙ(t0).

The arc length is the length |te − tb| of the time interval
Iarc = [tb, te]. Usually this time interval coincides with the
interval containing all observations used to determine the ini-
tial state vector and other orbit parameters. t0 usually coin-
cides with tb.

The arc length is an important option available to the ana-
lyst. In the history of celestial mechanics one usually made
the attempt to render the arcs as long as possible in order to
minimize the total number of parameters of a particular task
(Biancale et al. 2000). Prior to the satellite missions of the
twenty-first century most classical problems were governed
by relatively few observations.

The age of modern gravity field determination has led to a
revision of this concept. The availability of virtually continu-
ous tracking by GPS (typically allowing for the determination
of a satellite position every 10–30 s) and of continuous inter-
satellite measurements made short-arc methods a valuable
and attractive alternative absorbing many biases of unclear
origin into the initial state vectors. The success of proce-
dures developed by Mayer-Gürr et al. (2005) and Mayer-Gürr
(2008) underlines this statement.

2.7 Orbit determination

Orbit determination was originally understood as the task of
determining six parameters, defining the initial state vector of
the satellite, using all observations available in a certain time

interval. A slightly more general case is that of determining
the initial state vector and a certain number of arc-specific
parameters from the mentioned set of observations (see, e.g.,
Beutler 2005). In the most general case one has to determine
in addition parameters defining the force field. Such parame-
ters may be either satellite- and arc-specific or -independent.
Parameters of this kind may be called dynamic parameters.
As gravity field parameters are dynamic parameters, gravity
field determination is nothing but a generalized orbit deter-
mination task.

As the same dynamic parameters may show up in orbits
of different satellites or in different arcs of the same satellite,
the generalized orbit determination problem may be more
complex than the pure orbit determination problem: the arc-
specific parameters have to be pre-eliminated from the arc-
specific NEQs, these reduced NEQs have to be accumulated
and eventually the dynamic parameters common to all arcs
and satellites have to be estimated by solving the resulting
NEQ. The arc-specific parameters may then be calculated
in a re-substitution procedure (if sufficient information was
stored in the pre-elimination step) or by a pure orbit deter-
mination problem using the previously determined satellite-
and arc-independent parameters as known values.

2.8 Empirical and non-gravitational accelerations

From the mathematical point of view empirical dynamic
forces are indistinguishable from deterministic forces based
on a physical force model. Empirical dynamic forces usu-
ally are meant to absorb poorly modelled parts of the force
field. Typical empirical forces are constant, or once-, twice-,
etc. per-revolution forces in predefined directions (e.g., in
R, S, and W ). The independent argument associated with
the periodic forces needs to be specified (e.g., the argument
of latitude u, the osculating true anomaly v, etc.).

Empirical forces are, e.g., required to solve for at least
three constant accelerations per arc (in the 3 nominally
orthogonal measurement directions), when using three-
dimensional accelerometers to define the non-gravitational
forces, because accelerometer measurements are biased.

The separation of the gravitational and the non-
gravitational forces is an important issue for gravity field
determination. For gravity field determination with the
CHAMP, GRACE, and GOCE missions the following cases
can be distinguished (where we use the Class I and Class II
observables as introduced in Sect. 2.2):

1. Use of the Class I observables (e.g., kinematic positions
when determining the gravity field from GPS only, kine-
matic positions and K-Band range-rates or ranges in the
case of the GRACE mission)

2. Use of Class I and of Class II observables (in particular
of accelerometer data).
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In the first case the influence of the non-gravitational forces
is absorbed either by the parameters of physical models (for
drag, direct and albedo radiation pressure, etc.), or by the
parameters of the empirical forces (constant, once-, twice-,
etc. per-revolution), or by stochastic parameters (pulses or
piecewise constant accelerations), or by the gravity field
parameters (what unfortunately never can be completely
avoided), or by a combination of these quantities.

Eventually, the separation between the gravitational and
non-gravitational parts of the force field has to be left to
“mathematics”, i.e., to the solution of the resulting combined
NEQs. This separation is a delicate issue: when, e.g., setting
up too many loosely constrained piecewise constant acceler-
ations, the entire gravity signal may be absorbed, as well, by
the above mentioned dynamic empirical or pseudo-stochastic
parameters.

It is easy to use accelerometer data as “error free” biased
and scaled accelerations in a numerical integration proce-
dure. The bias (per component) can be simply an offset or
it can be more complex by including other empirical func-
tions (once-, etc. per-revolution, polynomial in time, etc.).
When using multistep or collocation methods for numeri-
cal integration, the interval of the entire arc is subdivided
into subintervals and the accelerometer time series are de
facto approximated within each subinterval by polynomials
of degree q − 2, if q is the order of the integration method
(Beutler 2005).

3 The celestial mechanics method

The CMA is based on the orbit determination module of the
Bernese GPS Software (Dach et al. 2007), which is used
every day by the Center for Orbit Determination in Europe
(CODE) Analysis Center of the IGS to determine the orbits
of all GNSS satellites with openly available signals. This
nucleus of the CMA already is capable of solving for pseudo-
stochastic pulses for navigation-type satellites (Beutler et al.
1994). For gravity field determination based on the orbits
of LEOs the module had to be generalized to allow for the
introduction of many pulses, piecewise constant, or piece-
wise linear accelerations for determining the orbits of LEOs,
an issue documented by Jäggi et al. (2006). The CMA was
then systematically upgraded for gravity field determina-
tion using single satellites equipped with spaceborne GPS
receivers and constellations equipped with GPS and ultra-
precise inter-satellite measurements. Essential mathematical
tools were already published in Beutler (2005), first grav-
ity fields using CHAMP and GRACE hl-SST data were pre-
sented by Prange et al. (2009) and Jäggi et al. (2010a), respec-
tively, a field based on 6 years of CHAMP data were sub-
sequently generated by Prange et al. (2010), and important
technical aspects related to gravity field determination using

the data of spaceborne GPS receivers were discussed by
Jäggi et al. (2009a). The inter-satellite capabilities of the
CMA were tested for the first time to derive a gravity field
based on GRACE ll-SST data gathered in 2003 (Jäggi et
al. 2010a), the GRACE gravity field AIUB-GRACE02Sp
based on 1 year of GRACE data (year 2007) was generated in
2008/2009 and presented by Jäggi et al. (2009b). The gravity
field AIUB-GRACE02S, based on the GRACE data of the
years 2006 and 2007 was presented by Jäggi et al. (2010b).

The important characteristics of the CMA are described
in this section, where the discussion follows in essence the
pattern of Sect. 2.

3.1 The equations of motion and their solution

So far, the linearized equations of motion for a particular arc
were written in a generic way using the parameters pi , i =
1, 2, . . . , npar, see Eq. (1). In order to discuss the solution
methods of the variational equations we have to be more spe-
cific. As constellations of satellites with inter-satellite mea-
surements are an important issue, it is also required to set
up simultaneous arcs for at least two satellites. This is why
two satellite arcs (with identical boundaries) with indices
j = 1, 2 are considered from now on. For the arc with index
j we distinguish

− the six parameters p j1, p j2, . . . , p j6 defining the initial
state vector of the arc,

− dynamic parameters, in particular

− scaling parameters qi , i = 1, 2, . . . , d of general
models relevant for all satellites and arcs,

− scaling parameters of arc-specific (usually empiri-
cal) model parameters q ji , i = 1, 2, . . . , d ′.

The gravity field parameters are typical general parameters
(labelled qi ), constant and periodic terms in given directions
are typical arc-specific parameters (labelled q ji ).

The initial value problems at t0 related to the two arcs of
two Earth orbiting satellites with indices j = 1, 2 may be
expressed as:

r̈ j = −G M
r j

r3
j

+ f(t, r j , ṙ j , q1, . . . , qd ,

q j1, q j2, . . . , q jd ′)
.= f j

(4)
r j0 = r(t0; a j0, e j0, i j0,� j0, ω j0, u j0)

v j0 = ṙ(t0; a j0, e j0, i j0,� j0, ω j0, u j0), j = 1, 2.

Equations (4) define the equations of motion and the initial
state vectors r(k)

j (t0) = r(k)(t0; a j0, e j0, i j0,� j0, ω j0, u j0),

k = 0, 1, j = 1, 2 at epoch t0. The initial osculating elements
define the initial state vector, where a denotes the semi-major
axis, e the numerical eccentricity, i the inclination w.r.t. the
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equatorial plane, � the right ascension of the ascending node,
ω the argument of perigee, and u the argument of latitude at
time t0.

Equations (4) refer to an inertial reference frame, the sys-
tem J2000 in our case. The Earth-fixed frame is the Inter-
national Terrestrial Reference Frame (ITRF), underlying the
generation of the CODE products (in general we use the
ITRF-05, see Altamimi et al. 2007). The transformation
parameters between the Earth-fixed and the inertial system
are in part provided by CODE (polar motion and length of
day) and in part by the IERS (see McCarthy and Petit 2003).

The equations of motion (4) implicitly contain many more
dynamic parameters, which are related to models assumed
as known in our context, e.g., the transformation parameters
between the Earth-fixed and the inertial frames, the param-
eters defining the orbits and gravitational attraction of Sun,
Moon and planets on the satellites, and the parameters defin-
ing the a priori known time varying part of the Earth’s gravity
field (due to atmosphere and oceans). Table 1 contains a list
of the more important models. In most cases it is possible
to select alternative models to describe one and the same
physical phenomenon.

One might miss parametric models for the prominent non-
gravitational forces such as atmospheric drag, solar radia-
tion pressure, albedo radiation pressure. They are not listed,
because their effect should be captured by the accelerometers
and/or the empirical dynamic models in Table 1. In the latter
case, the impact of the non-gravitational forces is absorbed
uniquely by the empirical accelerations in Table 1 and/or by
stochastic parameters.

3.2 The GPS-derived observables

The original observations of the CHAMP, GRACE, and
GOCE missions are those acquired by the spaceborne GPS
receivers, by the K-Band instrument, and by the accelerome-
ters. GPS is the primary observation technique in the case of
the CHAMP mission, K-Band plays this role for the GRACE
mission, and the ensemble of three pairs of three-dimensional
accelerometers, the gradiometer, is the primary instrument
for the GOCE mission. The following discussion is confined
to the role of the three observation types for the first two
missions.

A PPP based on the ionosphere-free linear combination
of phase observations of the LEO GPS receivers generates
the positions r′

l of a satellite at epochs tl , l = 1, 2, . . . , and,
in principle, the full covariance matrix cov(r′

l) associated
with them. The PPP procedure of the development version
of the Bernese GPS Software (Dach et al. 2007) is used for all
three missions. The kinematic positions are the GPS-derived
observables in the CMA. The ensemble of the kinematic posi-
tions is sometimes referred to as kinematic orbit.

Table 1 Force models for satellite motion

Characteristic Comment

Force field
Gravitational

Earth’s gravity field Development of the Earth’s static gravity
field into spherical harmonics. Maximum
degree n and order m selectable

Solid Earth tides IERS2000 (McCarthy and Petit 2003),
elastic Earth

Ocean tides Many models, e.g., FES2004 (Lyard et al.
2006)

Sun, Moon, Planets Point mass attractions, based on JPL
Development Ephemeris DE-405 (Jupiter,
Venus, and Mars used)

De-aliasing Due to the atmosphere and the oceans’
response (see Flechtner 2005)

Non-gravitational
Accelerometer Optionally, each set of tabular values of

the three accelerations measured onboard a
satellite may be used as empirically given
forces

Empirical (constant) Constant accelerations in the R-, S-, and
W -directions

Empirical (periodic) Accelerations of type ac cos ku + as sin ku
in the R-, S-, and W -directions; u = argu-
ment of latitude, k = 1, 2, . . . , 5 stand for
once- twice-, etc. per-revolution

Transformation
Nutation IAU2000 (McCarthy and Petit 2003)
Subdaily polar motion IERS2000 (McCarthy and Petit 2003)
Mean pole According to McCarthy and Petit (2003)
Polar motion Values of the CODE Analysis Center used
UT CODE values for length of day (LoD),

initial value fixed on VLBI-derived series
(from IERS)

The use of the kinematic positions instead of the original
GPS observations is statistically correct, if the full covariance
matrix of the PPP is used. Currently, it is feasible in the CMA
to make use of the full covariance matrix up to time intervals
of about one revolution period for a 30 s sampling. Usually,
however, the epoch-specific covariance matrices associated
with the kinematic positions are used to define the epoch-
specific weight matrices of the kinematic positions:

Pl
.= σ 2

ph[cov(r′
l)]−1, (5)

where the covariance matrix refers to the a priori error σph.

σph is the RMS error a priori of the GPS phase observation of
the L1 carrier phase, where σph ≈ 0.001 m for the Blackjack
receiver combined with a choke ring antenna (Montenbruck
et al. 2006).

With definition (5) of the weight matrix, the RMS error in
the parameter determination process(es) based on the GPS
positions r′

j i has the same meaning as in the preceding PPP-
procedure using the original GPS observations.

Alternatively, a diagonal weight matrix in the (R, S, W )-
system may be used. Prange et al. (2009) showed, however,
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that the choice (5) gives better results than a diagonal weight
matrix.

3.3 The filtered K-Band observations

The biased GRACE Level 1a K-Band ranges, generated at
a 10 Hz rate, are not publicly available. The Level 1a data
are filtered. The filtering process substantially decimates the
number of observation equations (by a factor of 50) without
losing the accuracy inherent in the original data and without
changing the information content in the bandwidth important
for gravity field determination. The filter used to transform
the GRACE Level 1a into the Level 1b data is described
by Thomas (1999). The filter is linear, i.e., the ensemble
of filtered Level 1b 5 s data ρ is a linear combination of
the ensemble of 10 Hz Level 1a data p. As the filter also
provides the first and second time derivatives of ρ we may
write:

ρ = D p

ρ̇ = Ḋ p (6)

ρ̈ = D̈ p.

The matrices D, Ḋ and D̈ are band-diagonal. Each filtered
value is based on 707 consecutive unfiltered values (con-
tained in a time window of 70.7 s). As subsequent filtered
values are based on heavily overlapping time windows, the
correlations between the filtered values must be studied in
the analysis of Level 1b data.

Assuming that the Level 1a ranges are statistically inde-
pendent and of the same accuracy, it is easily possible to
compute the covariance matrix of the entire set of filtered
values (ranges, range-rates, or range-accelerations) as a func-
tion of the covariance matrix of the errors in the unfiltered
measurements:

cov(ρ) = σ 2
kbd DDT, (7)

where σkbd is the RMS error of the Level 1a ranges.
The corresponding weight matrix is

P = (DDT )−1. (8)

The weight matrices corresponding to range-rate and range-
accelerations may be written as

P′ = σ 2
kbd cov(ρ̇)−1 = (ḊḊ

T
)−1 (9)

and

P′′ = σ 2
kbd cov(ρ̈)−1 = (D̈D̈

T
)−1. (10)

The CMA allows it to analyze range or range-rate Level 1b
K-Band data. Optionally, the correlations may be taken into
account when analyzing the K-Band data, however, not over
the entire arc (1 day), but over user-specified time intervals of

the order of 15–60 min. It is also possible to analyze subse-
quent range differences or range-double-differences (with-
out taking correlations into account). The issue is studied in
detail by Beutler et al. (2010).

3.4 Accelerometer measurements

The correct, but unrealistic way of dealing with the acceler-
ometer observations was outlined in Sect. 2.2. The discus-
sion was based on the original Level 1a measurements, often
assumed to be independent. The Level 1b accelerations, gen-
erated at a 1 s spacing, are filtered using a similar filter (double
window width, no polynomial fit, see Thomas 1999) as that
used for the K-Band observations. The statistical properties
of the Level 1b accelerations, emerging from the filter pro-
cess, are thus known and might be taken into account (for
the observations of Classes I and II). The pulses or piece-
wise constant accelerations, the so-called pseudo-stochastic
parameters (see Sect. 3.9), are an important style element
of the CMA. When setting up the pulses with the spac-
ing of the accelerometer Level 1a measurements and when
using observation equations of type (3) for the accelerometer
measurements, the statistical treatment of the observations
would be correct. In the CMA the pseudo-stochastic param-
eters are currently set up with a spacing of only 5–15 min,
which is of course far from the theoretically required spac-
ing dictated by the accelerometer measurements. The
discussion concerning the statistical treatment of the accel-
erometer measurements will be continued in Beutler et al.
(2010).

3.5 Primary equations

When dealing with orbit or gravity field determination, each
arc is represented as a linear function of the unknown param-
eters according to Eq. (1), implying that particular solutions
of the initial value problems (4) with given a priori values
for the dynamic parameters and a given initial state vector
have to be generated. The computed values of the observables
(the term “c” of “o-c”) have to be calculated as a function of
the known a priori values of the parameters with an intrinsic
accuracy better than the accuracy of the observations.

The collocation method of selectable order q = 8 − 12,
exactly as described by Beutler (2005), was initially used in
the CMA to solve the initial value problems (4). Internally,
each component of the solution vector is represented piece-
wise (in consecutive, non-overlapping and contiguous sub-
intervals of length H covering the entire arc) by polynomials
of degree q. The stepsize H may be either defined automat-
ically or set to a constant value. If no accelerometer-derived
empirical forces are used, an algorithm with automatic step-
size control can be used.
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Fig. 2 Accumulated rounding
errors in R-, S- and
W -directions; left conventional
collocation method, right
modified collocation method
(note the scale differences in the
figures)
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It is not trivial to generate solutions of the initial value
problems (4), from which inter-satellite distances with an
accuracy of about 1 µm may be derived for arcs as long
as 1 day. In order to check the performance of our inte-
grator, the following experiment was performed: an “error-
free” series of satellite positions with a spacing of 10 s was
produced using the collocation method of order q = 8 with
automatic stepsize control. The Earth’s gravity field Eigen-
CG03C (Förste et al. 2008) was cut off after the degree
nmax = 150. The third-body perturbations, the fixed-body
and the ocean tides were taken into account. Air drag and
radiation pressure were ignored. These positions were then
used (with the same force field) with a collocation proce-
dure of order q = 9 and a slightly different setting for the
automatic stepsize control in an iterative orbit improvement
process (to avoid the generation of identical rounding errors
in the simulation and estimation procedures), where only the
six initial osculating elements were determined. One would
expect the residuals, i.e., the differences between the sim-
ulated and estimated positions, to be below the 1 µm level.
The average stepsize H̄ was 11.2 and 16.2 s for the simula-
tion and the orbit determination run, respectively. Figure 2
(left) shows the errors in the R-, S-, W -components over
the entire day using the collocation method provided by
Beutler (2005). The resulting residuals are clearly above the
required accuracy level. Differences of up to about 15 µm
show up between the simulated and estimated S-component
of the satellite positions. The same figure also proves that
the conventional procedure may be used without concerns
for gravity field determination based “only” on GPS-derived
positions: the resulting inconsistencies are clearly below the
accuracy of the kinematic satellite positions.

In order to guarantee accuracies <1 µm for inter-satellite
distances, the collocation procedure in Beutler (2005) was
modified to represent the initial state vectors associated with
the subintervals with better than double precision (corre-
sponding to 64 bits assigned to a floating point number). This
can be achieved easily, as the individual integration step at
epoch ti of our numerical integration procedure solving the
system of type (4) for one of the satellites can be brought into
the form

r(ti+1) = r(ti ) + �ri,i+1
(11)

ṙ(ti+1) = ṙ(ti ) + �ṙi,i+1

and because the absolute values of the increments are much
smaller than those of the state vector at ti . It is thus sufficient
in a first order to store only the initial state vector r(ti ), ṙ(ti )
with higher than double precision and to calculate only the
sums in Eq. (11) in extended precision. The modified proce-
dure reduces the rounding error by several orders of magni-
tude.

The sketched modified procedure has roughly the same
characteristics concerning computational efficiency and stor-
age requirements as the conventional method, but reduces the
accumulated rounding errors below the required error level.
Figure 2 (right) shows the success of the procedure.

The example indicates that FORTRAN “double preci-
sion” (with 64 bits per double precision number) reaches its
limits for our demanding application. A general change to
“extended precision” (with 128 bits per extended precision
number) is currently not considered. With increasing com-
puting power, better processors, and improved FORTRAN
compilers, this rigorous solution might become feasible in
future for the purpose of numerical integration, which might
be important for the analysis of future gravity missions based
on even more accurate inter-satellite data such as interfero-
metric laser measurements.

Equation (1) is used for orbit and gravity field determina-
tion. The equation was obtained by linearizing the original
equations of motion (4). It is important to keep the linear-
ization errors in the satellite orbits small. For gravity field
determination using kinematic positions and inter-satellite
measurements the a priori orbits are established by the fol-
lowing four-step procedure (described in more detail by Jäggi
et al. 2010b):

1. Approximate orbit parameters in Eqs. (4) are obtained,
separately for each arc and satellite, with an iterative
orbit determination procedure using an a priori gravity
field and using only the kinematically established satel-
lite positions as pseudo-observations (together with the
associated weight matrices) to determine the six initial
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osculating elements per arc and the other satellite- and
arc-specific parameters (pulses or piecewise constant
accelerations) as unknowns, with a spacing foreseen for
the “final” solution. The corresponding NEQs are saved.

2. The orbits resulting from step 1 are used to set up the
normal equations using the K-Band observations (with
the same parametrization). The resulting NEQs contain
the arc-specific parameters for both satellites.

3. The two GPS NEQs and the K-Band NEQ are now com-
bined, using a realistic weight ratio of the two observable
types to derive the a priori orbits for the satellites of
the constellation. The resulting orbits represent the kine-
matic positions with an accuracy of few cm, the K-Band
observations with an accuracy of few µm for range or
about 0.1–0.2 µm/s for range-rate (if a good a priori
field is used).

4. The orbits resulting from step 3 (based on GPS and
K-Band) are used as a priori orbits for gravity field deter-
mination. In this “final” step the parameter list has to
be enlarged to contain the gravity field parameters, as
well. Note that three NEQs are set up, namely two GPS-
specific related to the kinematic positions of the two sat-
ellites and one related to the K-Band observations (if the
parameter transformation of Sect. 3.14 is applied, the two
GPS NEQs are merged into one GPS NEQ before com-
bining the resulting GPS NEQ with the K-Band NEQ).

The quality of the a priori gravity field is not critical in
this procedure—even the EGM96 (Lemoine et al. 1997) is
sufficient. The truth of this statement was demonstrated by
Jäggi et al. (2010a). For gravity field determination based
only on the GPS-derived kinematic positions the entire pro-
cedure is reduced to the first step—with the exception that
the gravity field parameters have to be set up, as well, in the
last step of the iterative orbit improvement and stored in the
corresponding NEQ.

3.6 Arcs, arc length and pulses

One set of initial osculating elements might in principle be
declared valid over very long time intervals (e.g., over years).
The example of the preceding section showed, however, that
orbital arcs with a length of 1 day and an accuracy <1 µm per
coordinate are already difficult to generate with pure dynamic
methods. As the data of gravity missions are usually made
available in 1-day batches, arc lengths of 1 day are conve-
nient. One day arcs are therefore used as the basic arc length
in the CMA.

By allowing for instantaneous velocity changes (pulses)
�vRl ,�vSl , and �vWl , in the pre-defined directions eR,

eS, eW and at user-defined epochs tpl , l = 1, 2, . . . , ns with
a spacing of �tp min, it is easily possible to generate many
different contiguous short-arc solutions with lengths of �tp

min or multiples thereof. In the CMA we usually select �tp

between 5 and 30 min. The short arcs generated by the CMA
differ from “normal” short arcs, which are described by a full
set of six initial or boundary values. Normal short arcs are
not contiguous.

The actual selection of the short-arc length takes place
when stacking the sets of the daily NEQs. The additional
storage requirements for one daily NEQ with pulses are mod-
est: for a �tp = 15 min spacing between subsequent pulses
3 × 95 ≈ 300 additional parameters have to be added to the
NEQs without pulses. This additional burden does almost not
matter for gravity field determination, where the parameters
are typically counted in tens of thousands.

By setting up in addition to the pulses offsets in three
orthogonal directions at the boundary epochs it would be eas-
ily possible to modify the CMA procedure to make it fully
equivalent to a conventional short-arc method. As a similar
effect in the data fit may be achieved by reducing the time
interval �tp between pulses, as well, this generalization was
not implemented into the CMA.

3.7 Variational equations

With the introduction of pulses at ns epochs separated by
�tp the list of parameters defining the arc with index j reads
as:

{p j1, p j2, . . . , p j,6+d+d ′+3ns }
.= {

a j , e j , i j ,� j , ω j , u j0, q1, . . . , qd , q j1, . . . , q jd ′ ,

�v j R1,�v j R2 , . . . ,�v j Rns
,

�v j S1,�v j S2 , . . . ,�v j Sns
,

�v jW1,�v jW2 , . . . ,�v jWns

}
. (12)

Each arc is thus defined by six initial osculating elements, 3ns

pulses, d ′ satellite- and arc-specific, and d general dynamic
parameters. Each orbit may thus be written in linearized form
as stated in Eq. (1). Introducing for abbreviation the symbol

z jk(t)
.= ∂r0 j (t)

∂p jk
, (13)

where r0 j (t) define the a priori orbits based on the sets
p j01, p j02, . . . , p j0,6+d+d ′+3ns of known approximate val-
ues of the parameters (12) (the understanding of the functions
r0 j (t) and of the partial derivatives of them is the same as
that related to the corresponding symbols in Eq. (1)). Taking
the derivative of Eqs. (4) w.r.t. parameter p jk one obtains the
so-called variational equations for this parameter together
with the corresponding initial values:

z̈ jk = A j0 · z jk + A j1 · ż jk + ∂f j0

∂p jk

z jk(t0) = ∂

∂p jk

{
r(p j01, p j02, . . . , p j0,6+d+d ′+3ns )

}

123



616 G. Beutler et al.

.= ∂r j0

∂p jk

ż jk(t0) = ∂

∂p jk

{
ṙ(p j01, p j02, . . . , p j0,6+d+d ′+3ns )

}

.= ∂ ṙ j0

∂p jk
, (14)

where the 3 × 3 matrices A j0 and A j1 are defined by

A j0[lm] = ∂ f j0l

∂r j0m

, A j1[lm] = ∂ f j0l

∂ ṙ j0m

, (15)

and where f j0l
denotes the component l of the total acceler-

ation f j0 in Eqs. (4); the subscript “0” indicates that the force
refers to the known a priori orbit. The initial values z jk(t0)
and ż jk(t0) are zero for all dynamic parameters, whereas the
explicit derivative of the force vector f j0 w.r.t. parameter p jk

is zero for the initial osculating elements and for the pulses.
The matrices A j0 and A j1 are the same for all parameters, i.e.,
all variational equations are based on the same homogeneous
system. In the absence of velocity-dependent forces we have
A j1 = 0. Note that A j1(t) �= 0, as soon as empirical forces
in directions S or W are set up, because the velocity vector
is required to calculate the unit vectors in these directions.

The differential equation system in Eqs. (14) is linear,
homogeneous and of second order with initial values z jk

(t0) �= 0 and ż jk(t0) �= 0, if the parameter p jk is either one
of the initial osculating elements or one of the pulses, whereas
the variational equations in Eqs. (14) are linear, but inhomo-
geneous for p jk ∈ {q1, . . . , qd , q j1 , q j2 , . . . , q j ′d }, but then
they have zero initial values, namely z jk(t0) = ż jk(t0) = 0.

According to the theory of linear differential equation sys-
tems the general solution of a homogeneous linear differen-
tial equation system of order N and dimension D is given
by N D linearly independent particular solutions. As N = 2
and D = 3 in the case of orbit or gravity field determination,
the six solutions z jm(t), m = 1, 2, . . . , 6, associated with
the initial osculating elements (for each arc and satellite),
may be selected as the elements of the complete system of
solutions of the homogeneous part of Eqs. (14).

In the CMA the six solutions of Eqs. (14) associated with
the initial osculating elements are generated by simultaneous
numerical integration with the primary system (4). No use is
made of the linearity of the system (14) at this stage. The
partial derivatives z jk(t) for all other parameters p jk, k > 6
are represented as linear combinations of the partial deriva-
tives w.r.t. the six initial osculating elements:

z jk(t) =
6∑

m=1

αk jm z jm(t)

(16)

ż jk(t) =
6∑

m=1

αk jm ż jm(t),

where the coefficients are time-independent, if the parame-
ter p jk corresponds to a pulse, they are functions of time t ,
if p jk is one of the dynamic parameters. In the former case
the time-independent parameters result as the solution of a
linear system of equations, in the latter case they emerge as
integrals (see Beutler 2005, Vol. 1, Chapter 5).

The solution of the primary equations (4) and of the six
variational equations associated with the six initial osculat-
ing elements on one hand is completely separated from the
solution of the variational equations for all other parameters
on the other hand. The computational burden for the solu-
tion of the variational equation w.r.t. pulses is negligible in
the CMA, as the corresponding partial derivatives (16) are
linear combinations of the partial derivatives w.r.t. the initial
osculating elements with time-independent coefficients.

The six coefficients of the linear combination (16) have
to be calculated as integrals in the case of dynamical param-
eters. Instead of numerically solving a differential equation
system of order 2 and dimension 3 one thus has to solve six
definite integrals by numerical quadrature. As there are much
more efficient methods available for numerical quadrature
than for the numerical solution of ordinary differential equa-
tion systems, namely the Gaussian quadrature procedures,
which are consistently used in the CMA, the computational
burden is substantially reduced, as well, for the solution of
the variational equations for the dynamic parameters. The
efficiency gain is (a) due to the elimination of all iterative
procedures occurring in the solvers of ordinary differential
equations (each integrated value is a linear combination of
a small number of values of the integrand) and (b) due to
the fact that the Gaussian quadrature formulas approximate
definite integrals based on q values of the integrand by a
polynomial (Taylor series expansion) of degree 2q − 1 and
not of q −1, as it would be the case for differential equations.
This behavior essentially breaks error propagation.

The reduction of CPU requirements is, as a matter of fact,
so significant that the coefficients αk jm(t) are not stored and
then interpolated to particular values, but actually re-calcu-
lated as integrals whenever needed.

The solution of the primary equations, the complete sys-
tem of the six solutions of the homogeneous part of Eqs. (14),
and the coefficients αk jm for all pulses (or accelerations) are,
however, stored together with the pulse epochs in a so-called
standard orbit file, allowing the retrieval of the position vec-
tor and its time derivatives for each time argument t in the
arc to the accuracy needed. The information in the standard
orbit file allows it therefore, as well, to retrieve the partial
derivatives w.r.t. the initial osculating elements and w.r.t. all
pulses. The bureaucratic burden of the procedure and the stor-
age requirements are considerably reduced by making conse-
quent use of the representation (16) for the partial derivatives
w.r.t. the dynamic parameters. For more information we refer
to Beutler (2005, Vol I, Chapters 5 and 7).
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3.8 Pulses versus piecewise-constant accelerations

The CMA allows it to set up piecewise constant accelerations
in the R-, S-, and W -directions in the intervals [tpl , tpl +�tp]
instead of setting up pulses at the epochs tpl . The partial
derivatives w.r.t. the piecewise-constant accelerations may
be computed very efficiently, as well. The partial derivatives
with respect to all piecewise-constant accelerations in a par-
ticular direction may be written in the form (16), where the
coefficients may be derived according to Jäggi et al. (2006)
from the coefficients of the partial derivative of the orbit w.r.t.
a constant acceleration in the same direction acting over the
entire arc. Jäggi et al. (2006) state that piecewise-constant
accelerations are preferable for orbit determination. For grav-
ity field determination different recommendations are made
(see Beutler et al. 2010).

3.9 Constraining the pulses or the piece-wise constant
accelerations

The introduction of pulses or piece-wise constant acceler-
ations is motivated by exactly the same reasons as the use
of short-arcs, namely by the imperfectly known force field
(with or without using accelerometer data). Compared to the
classical short-arc method one is, however, in a much bet-
ter position to make use of the known statistical properties
of the non-modelled parts of the force field by constraining
the pulses or accelerations. Theoretically one might achieve
similar effects by constraining the offsets and the pulses in
conventional short-arc methods, but one then would have
to refer all short-arcs to one and the same a priori “long-
arc” orbit; this requirement would remove the simpleness
and attractiveness of the conventional short-arc method to a
great extent.

A pulse �vl in a particular direction e(tl) at time tl is to
the first order in �tp equivalent to an acceleration al(t) of
constant size �al acting in the direction e(t), i.e., al(t)

.=
�al e(t) ≈ �al e(tl), and in the time interval [tl , tl + �tp],
�tp = |[tl , tl+1]|. The pulse and the acceleration are thus
approximately related by

�vl ≈ �al �tp. (17)

Equation (17) should be used in particular when accounting
for the impact of the stochastic part of the accelerometer data
in Eq. (3) using constrained pulses.

Currently the pulses or accelerations are set up in the CMA
typically with a spacing of �tp = 5–30 min. In order to come
up with meaningful constraints for these parameters from the
point of view of theory we have to estimate their size as a
function of the accelerometer Level 1a accuracy of about
1 × 10−10 m/s2 in the accelerations (for the more accurate
axes). Assuming that the accelerometer accuracy is the only
error source, this value can be transformed into an “elemen-

tary” pulse accuracy of the duration of �tplk,L1 = 0.1 s of
1 × 10−11 m/s at epochs tplk regularly spaced in the interval
[tl , tl + �tp], where �tp,L1 = 0.1 s is the spacing of “inde-
pendent” Level 1a accelerometer measurements. Assuming
these elementary pulses to be independent we can assess the
RMS error of the CMA pulse �vl(�tp) set up every �tp

seconds approximately as

σ 2
vl

(�tp) =
m∑

k=1

σ 2
plk,L1 = m · σ 2

p,L1, (18)

where m = �tp/�tp,L1. For pulses set up at 15- min inter-
vals we thus have

σvl (�tp) = √
m · σp,L1 ≈ 1 × 10−9 m/s. (19)

The corresponding value for piecewise constant accelera-
tions can be calculated from Eq. (19) using Eq. (17).

When accelerometer data are ignored or not available and
when the non-gravitational forces are accounted for only by a
modest empirical model with few estimated parameters, e.g.,
constant and once-per-revolution terms in the three directions
R, S, and W , one has to expect effects due to the residual part
of the non-gravitational forces of the order of a few 10−9 m/s2

in the accelerations (about 10–100 times smaller in the dif-
ferences of the accelerations between GRACE-A and -B).
As this problem can hardly be treated by statistical consider-
ations, one should either use unconstrained solutions or find
the appropriate weighting by numerical experiments. The
impact of setting up constrained piecewise constant accel-
erations or pulses will be further discussed by Beutler et al.
(2010).

3.10 Parameter estimation: general aspects

Parameter estimation is based on the classical least-squares
method and the satellite orbits solve ordinary differential
equations in the CMA. Pulses or piecewise constant acceler-
ations with a high time resolution give the orbits a flexibility
close to that offered by a filter approach based on stochas-
tic differential equation systems. The relationship between
least-squares method based on pulses and accelerations on
one hand and the filter approaches on the other hand was
treated by Beutler et al. (2006).

The NEQ contributions are set up separately for the GPS
and the K-Band observables. In principle the contributions of
the accelerometers are also set up separately, but the result-
ing NEQs are not made available as separate entities. The
GPS contributions are generated separately for all satellites
and arcs involved. It is thus possible to derive gravity fields
using only GPS (even for individual satellites) and to find the
correct weight ratio of the K-Band and GPS-contributions
(Beutler et al. 2010).
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3.11 Parameter estimation: the GPS contribution

For the solution of the variational equations the distinction
was made between parameters defining the initial state vec-
tor, the force field, and the stochastic parameters. In this
section we only make the distinction between arc-and
satellite-specific parameters on one hand and general param-
eters occurring in different NEQs. The parameters of the for-
mer kind define the underlying orbit determination problem,
the parameters of the latter kind, e.g., the gravity field.

The linearized observation equation for the position of
satellite j at time tl may thus be written as:

Ao, jl o j + Aq, jl q − �r jl = v jl , (20)

where o j is the array containing all parameters defining the
initial conditions, all satellite- and arc-specific dynamic
parameters, and all stochastic pulses, q is the array with the
common dynamic parameters, �r jl

.= r′
jl − r0 j (tl) con-

tains the terms “observed - computed” for the satellite and
time considered, and v jl is the array with the residuals. Ao, jl

and Aq, jl are the first design matrices corresponding to the
parameter arrays o j and q. The first design matrices A... con-
tain three lines corresponding to the three Cartesian coordi-
nates. The number of columns corresponds to the number of
parameters of the particular type. Each column of any of the
matrices A... may be written as

A...,k = ∂r0 j (tl)

∂p jk
, (21)

where p jk is the parameter pertaining to column k (the under-
standing of the functions r0 j (t) and of their partial derivatives
is the same as that related to the corresponding symbols in
Eq. (1)).

Assuming an epoch specific weight matrix according to
Eq. (5) the NEQ contribution arising from the kinematic posi-
tion of satellite j at time tl is:
(

AT
o, jlP jlAo, jl , AT

o, jlP jlAq, jl

AT
q, jlP jlAo, jl , AT

q, jlP jlAq, jl

)(
o j

q

)

=
(

AT
o, jlP jl�r jl

AT
q, jlP jl �r jl

)
. (22)

The total NEQ contribution for one satellite and for one arc
is simply obtained by summing up all contributions (22) for
l = 1, 2, . . .. In an attempt to further simplify matters the
NEQs for the two satellites of the constellation are written
as:
(

N11 N1q

NT
1q Nqq

) (
o1

q

)
=

(
b1

bq

)
and

(
M22 M2q

MT
2q Mqq

) (
o2

q

)
=

(
c2

cq

)
. (23)

Gravity field determination based only on the positions of
the satellites is completed by stacking the arc-specific con-
tributions (23)—after having pre-eliminated the arc-specific
parameters. The pre-elimination results in the following
reduced NEQ for the first satellite:
[
Nqq − NT

1qN−1
11 N1q

]
q = bq − NT

1qN−1
11 b1. (24)

GPS-specific weekly, monthly, annual, etc., solutions are
obtained by stacking the reduced daily NEQs (24). From
the formal point of view it does not matter whether only one
or several different satellites are involved. One expects of
course better results if satellites with different orbit charac-
teristics contribute to a particular solution. This statement
is based on the experiences of the pre-GPS era, when the
global gravity field had to be reconstructed mainly from the
SLR and astrometric tracking techniques (see Biancale et al.
2000).

3.12 Parameter estimation: the K-Band contribution

As in the case of the GPS observation equations we distin-
guish (a) satellite- and arc-specific and (b) common param-
eters. A “new” parameter type, namely the K-Band bias
parameters, has to be considered when analyzing ranges,
because the K-Band range measurements are biased, (range-
rates are not biased). Designating the new array of common
parameters containing all parameters related to the force field
and the range biases by q̃, the observation equation for the
inter-satellite distance d(tl) at time tl may then be written as

Ão,1l o1 + Ão,2l o2 + Ãql q̃ − �dl = vl , (25)

where Ão,... are the first design matrices of the observed dis-
tance corresponding to the satellite- and arc-specific param-
eters for the two satellites and where Ãql is the first design
matrix corresponding to the common parameters.�dl = ρl−
d(tl) is the term “observed distance − a priori value for the
distance” at time tl , and

d(tl) = |r02(tl) − r01(tl)| (26)

is the distance as derived from the particular solutions of the
equations of motion at time tl for the two satellites considered.

For a particular satellite-specific parameter we have

Ão,1l;k = −r02(tl) − r01(tl)

d(tl)
· ∂r01(tl)

∂o1,k
and

Ão,2l;k = +r02(tl) − r01(tl)

d(tl)
· ∂r02(tl)

∂o2,k
, (27)

and for a common dynamic parameters qk

Ãql,k = r02(tl) − r01(tl)

d(tl)
·
[
∂r02(tl)

∂qk
− ∂r01(tl)

∂qk

]
. (28)
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If the element No. k of Ãql corresponds to a bias parameter
(active at tl ) we have

Ãql,k = 1. (29)

In the most general case a fully populated weight matrix P
has to be taken into account when creating the NEQ. It makes
therefore sense to write all K-Band specific observation equa-
tions of one arc (actually: all K-Band observations within an
interval in which the correlations are modelled correctly) in
matrix form

Ão,1 o1 + Ão,2 o2 + Ãq q̃ − �d = v, (30)

where line l of matrix Ão, j , j = 1, 2 is the matrix Ão, jl ,
etc. Assuming that P is the weight matrix of the entire set of
measurements, the resulting NEQ assumes the form
⎛

⎜⎝
Ã

T
o,1PÃo,1 , Ã

T
o,1PÃo,2 , Ã

T
o,1PÃq

Ã
T
o,2PÃo,1 , Ã

T
o,2PÃo,2 , Ã

T
o,2PÃq

Ã
T
q PÃo,1 , Ã

T
q PÃo,2 , Ã

T
q PÃq

⎞

⎟⎠

⎛

⎝
o1

o2

q̃

⎞

⎠

=
⎛

⎜⎝
Ã

T
o,1P �d

Ã
T
o,2P �d

Ã
T
q P �d

⎞

⎟⎠ . (31)

3.13 Parameter estimation: combining the GPS
and K-Band contributions

The NEQ (31) containing the K-Band contribution must now
be combined with the GPS-systems (23). The only open issue
is the determination of the correct ratio of the RMS errors
σph/σkbd of the two measurement techniques, which has to
be taken into account when stacking the K-Band and the GPS
NEQ contributions.

It is important to note that this ratio is of the order of
σph/σkbd ≈ 1,000 when using K-Band ranges, it is of the
order of σph/σkbd ≈ 10, 000 s when using K-Band range-
rates. Such ratios may give rise to numerical problems when
combining the GPS- and K-Band-specific NEQs, because
both contributions have to be referred to one and the same
mean error a priori (in the case of the CMA either to σph

or to σkbd ). A scaling of the K-Band system with a factor of
σ 2

ph/σ
2
kbd (adopting σph as weight unit) will lead to the loss of

many significant digits of the GPS contribution. This partic-
ular numerical problem is significantly reduced by applying
the transformation proposed in the next paragraph.

3.14 Parameter estimation: transformation of orbital
parameters for constellations

When dealing with constellations of satellites separated by a
few hundred km only it is not advisable to use the NEQs and
the stacking procedure given in the previous section. In order

to illustrate the problems involved, we analyze the structure
of the observation equation (25) related to the inter-satellite
distance d(tl) of two satellites.

If the two satellites are close in space (in the case of the
GRACE mission the distance d(t) varies between about 170
and 270 km) we may conclude from Eqs. (27):

Ão,2l ≈ −Ão,1l . (32)

Whether or not a particular element Ãql,k of the line matrix
Ãql is small depends on the wavelength of the particular term
of the gravity field. If the element Aql,k corresponds to a term
of low degree, it is actually small in absolute value, which is
why the K-Band measurements are not well suited to deter-
mine the low degree terms. If the wavelength is, however, of
the order of the distance d ≈ 200 km between the satellites,
this will in general not be the case.

Equation (32) shows that the satellite positions themselves
are not well established with equations of type (25). This is
why the following parameter transformation is performed:

p1
.= 1

2
[o1 + o2], o1 = p1 + p2

(33)
p2

.= 1

2
[o1 − o2], o2 = p1 − p2.

Using transformation (33) the observation equations (25),
l = 1, 2, . . . may be modified as follows:

[A1 + A2] p1 + [A1 − A2] p2 + A3 q̃ − �d = v. (34)

Equation (32) says that the mean values of the orbit elements
and the mean values of the pseudo-stochastic pulses may be
estimated from (34) only with a poor quality (in the approx-
imation (32) this would not be possible at all), whereas the
difference between the orbital elements and the pulses may
be established rather accurately.

Equations (25) and (34) are algebraically equivalent. From
the numerical perspective version (34) is much better, because
it separates those satellite-specific parameters, which may
be established well (and do not pose any problems in a pre-
elimination procedure) from those, which are poorly deter-
mined by the K-Band observations (and which might be put
to zero in a first approximation).

Based on the observation equations (34) the following
modified NEQ contribution of K-Band observations may be
set up:
⎛

⎜⎜⎝

Nkbd,11, Nkbd,12, Nkbd,1q

NT
kbd,12, Nkbd,22, Nkbd,2q

NT
kbd,1q , NT

kbd,2q , Nkbd,qq

⎞

⎟⎟⎠

⎛

⎝
p1

p2

q̃

⎞

⎠ =
⎛

⎝
bkbd,1

bkbd,2

bkbd,3

⎞

⎠ (35)

The parameter transformation (33) also has to be applied to
the GPS part (23) of the analysis, because we have to stack the
NEQ contributions stemming from GPS and the contribution
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stemming from the K-Band. The combined NEQ contribu-
tion from GPS before performing the parameter transforma-
tion simply reads as:
⎛

⎝
N11, 0, N1q

0, M22, M2q

NT
1q , MT

2q , Nqq + Mqq

⎞

⎠

⎛

⎝
o1

o2

q

⎞

⎠ =
⎛

⎝
b1

c2

bq + cq

⎞

⎠ .

(36)

By applying the parameter transformation (33) to the above
combined equation one obtains:
⎛

⎝
N11 + M22, N11 − M22, N1q + M2q

NT
11 − MT

22, N11 + M22, N1q − M2q

NT
1q + MT

2q , NT
1q − MT

2q , Nqq + Mqq

⎞

⎠

⎛

⎝
p1

p2

q

⎞

⎠

=
⎛

⎝
b1 + c2

b1 − c2

bq + cq

⎞

⎠ . (37)

Using the same kind of arguments as in the case of the K-Band
equations, we conclude that the parameters p1 are better
established than the p2. The superposition of the transformed
K-Band NEQ contribution (35) and the combined and trans-
formed GPS-contribution (37) (with appropriate weights)
should therefore ideally strengthen the determination of both
parameter types.

The transformation greatly reduces the loss of signifi-
cant digits of the combined GPS and K-Band solution. It
is, however, even more important that different constraints
may be imposed on the mean values and half-differences
of the pseudo-stochastic parameters. To combine the daily
GPS- and K-Band-files into one daily file containing both
contributions one still has to weight the K-Band solution
with σ 2

ph/σ
2
kbd , but the effect is numerically much less detri-

mental, because the terms N11 + M22 remain large in abso-
lute value, whereas the corresponding term Nkbd,11 in the
K-Band Eq. (35) becomes very small; the terms N11 − M22,
on the other hand, are becoming small in absolute value and
hardly influence the term Nkbd,22 when superposing Eqs. (35)
and (37).

3.15 Orbit determination

Orbit determination in its simplest form was defined in
Sect. 2.7 as the task of estimating six parameters defining
the initial state vector (plus optionally a certain number of
satellite- and arc-specific parameters, e.g., pulses) from a set
of observations. In the context of gravity field determination
using satellites and/or satellite constellations orbit determi-
nation serves two purposes in the CMA:

1. The generation of a priori orbits (reference orbits) r0(t)
based on all observations (GPS and K-Band) within
the arc.

2. The generation of the residuals for all observations after
gravity field determination.

The first task was already discussed in Sect. 3.5. The solution
of the second task is actually almost identical with the solu-
tion of the first one when using the estimated gravity field
as the a priori gravity field. The only difference concerns
step four of the procedure: the parametrization will not be
changed to contain the gravity field parameters. The result-
ing standard orbits may now be used to generate the residuals
of the gravity field determination process. It is important, in
particular when using kinematic positions and inter-satellite
measurements for gravity field determination, to generate the
residuals for all observation types.

3.16 Empirical and non-gravitational forces

In Sect. 2.8 the distinction was made of methods based
uniquely on the Class I observations and those using in addi-
tion Class II observations (in particular the accelerometer
data). Both options are available in the CMA. One may easily
switch from one mode to the other if the empirical dynamic
parameters are the same in both cases. When, e.g., setting
up constant and once-per-revolution terms for the three com-
ponents R, S, and W —and solving for the corresponding
scaling parameters—these empirical models may be inter-
preted as bias parameters for the accelerometer data. When
not using the accelerometer data the same terms absorb to
the extent possible also the deterministic part describing the
non-gravitational forces. The only difference between the
two options to deal with the non-gravitational forces resides
in the constraints, which are put on the pulses (accelerations).
Whereas these constraints have to be relatively loose when
not using the accelerometer data, they may be rather tight
when making use of the accelerometer data. The concrete
settings of the constraints are an important issue of the anal-
ysis. Needless to say that the gravity field results improve, if
the constraints can be tightened – as long as the non-gravi-
tational contributions still may be absorbed by the empirical
terms. The issue is further studied by Beutler et al. (2010).

4 Methods for gravity field recovery using GRACE

Many methods for determining static and time varying grav-
ity fields were developed and applied to GRACE data in
recent years. To point out a few important differences
between the CMA and alternative approaches, we briefly dis-
cuss four of them, namely the developments of the

1. GeoForschungszzentrum Potsdam/Groupe de Recherche
de Géodésie Spatiale (Potsdam/Toulouse), resulting in
the series of the EIGEN gravity fields (Förste et al. 2008),
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2. Center for Space Research (University of Texas at Aus-
tin), resulting in the series of GGM gravity fields (Tapley
et al. 2005),

3. Institut für Geodäsie und Geoinformation in Bonn, result-
ing in the series of ITG gravity fields (Mayer-Gürr 2008),

4. Delft Institute of Earth Observation and Space Systems
(DEOS) resulting in the first release of DEOS Mass
Transport (DMT-1) monthly models (Liu 2008).

The first two methods are classical dynamic orbit and gravity
adjustment processes, which have their roots in the analy-
sis of SLR observations. The two methods are similar from
the point of view of structure and parametrization, they dif-
fer somewhat in the establishment of the GPS contribution:
the EIGEN solutions first determine the GPS orbits and GPS
clock corrections using data from a ground tracking network,
then the GPS-derived NEQs for orbit and gravity field deter-
mination are exploited using the LEO/GPS data together with
the GPS orbits and clocks determined previously. The GGM
solutions rely on the GPS orbits and GPS clock corrections
from the IGS. The GPS-specific NEQs for LEO orbit deter-
mination and gravity field determination are then established
as in the EIGEN solutions. The K-Band range-rates are ana-
lyzed in the same way in both solutions: the accelerometer
offset parameters are set up in the three orthogonal directions
for each day, one accelerometer scale is estimated for each
day in the case of the EIGEN solutions, one per month for
the GGM solutions. No attempt is made to absorb the defi-
ciencies of the force field model by setting up other than the
accelerometer-related empirical dynamic parameters in the
adjustment process. In order to absorb such effects and pos-
sible errors in the K-Band range-rate observable, so-called
K-Band empirical parameters (also called kinematic parame-
ters), namely, biases, slopes, and once-per-revolution param-
eters are introduced. One set of such parameters is set up
every 45 min for biases and slopes, every 90 min for the once-
per-rev terms. The parametrization follows in essence the
recommendations made by Kim (2000) and obviously tries
to avoid the absorption of gravity field signals by empirical
dynamic parameters. The GPS- and K-Band NEQs are com-
bined in the same way as in the CMA. The main differences
to the CMA are (a) the absence of pseudo-stochastic param-
eters, (b) the use of empirical parameters for K-Band, and
(c) the use of the original GPS observables instead of the
kinematic positions.

The procedures for gravity field determination developed
by Mayer-Gürr (2008) differ from the aforementioned meth-
ods by (a) using the positions from the GRACE science orbit
as kinematic positions, by (b) using short-arcs of 30 min, by
(c) using the K-Band ranges as the principal observations,
and by (d) taking the impact of accelerometer noise on the
K-Band observable into account through a covariance matrix.
The model used by Mayer-Gürr (2008) is closely related to

setting up pulses frequently. We use Eqs. (30) as the start-
ing point to demonstrate this relationship. The equations are
modified to contain the pulses related to the two satellites
in array p, the other orbit parameters and the gravity field
parameters in array q′:

Ã
′
q q̃′ + Ãp p − �d = v. (38)

According to Sect. 3.9 the constraints put on the pulses are
captured by the following pseudo-observation equations:

p − 0 = vp, (39)

where vp are the residuals associated with the pulses (in this
special case identical with the pulses). When assigning the
weight of 1 to the range observations (assumed as uncorre-
lated with an RMS error of σkbd ) and the weight σ 2

kbd/σ 2
p to

the pulses, the following NEQ results from Eqs. (38, 39):
⎛

⎜⎜⎝

Ã
′T
q Ã

′
q , Ã

′T
q Ãp

Ã
T
p Ã

′
q , Ã

T
p Ãp + σ 2

kbd
σ 2

p
Up

⎞

⎟⎟⎠

⎛

⎝
q̃′

p

⎞

⎠ =
⎛

⎝ Ã
′T
q �d

Ã
T
p �d

⎞

⎠ ,

(40)

where Up is the identity matrix (the dimension of which
equals the number of pulses). If the pulses are not of interest
and if the GPS NEQs are not considered, the vector p may be
pre-eliminated in the NEQs (35). The result may by written
as:

Ã
′T
q PÃ

′
q q̃′ = Ã

′T
q P�d, (41)

with

P = Uq ′ − σ 2
p

σ 2
kbd

Ãp

{
Up + σ 2

p

σ 2
kbd

Ã
T
p Ãp

}−1

Ã
T
p . (42)

Equation (42) is identical with the weight matrix resulting
from the covariance matrix (4.193) proposed by Mayer-Gürr
(2008) for the range observable (when assuming uncorre-
lated ranges, uncorrelated pulses, and using the same
approximation as above). The statistical model used by
Mayer-Gürr (2008) for short-arcs is thus very closely related
to our pseudo-stochastic model emerging from constrained
pulses.

The above developments neglect the impact of the pulses
on the GPS observation equations. This neglect is not impor-
tant for short-arcs, because the impact of orbit deficiencies
on the GPS observation equations is greatly reduced by the
classical orbit parameters of the short-arcs (initial or bound-
ary values) and because the impact of the constrained pulses
within the short-arc on the kinematic positions is well below
their RMS errors. Equation (42) should not be used for long-
arcs. Formulas analogous to Eq. (35) have to be set up for
the GPS contributions of GRACE-A and -B and these have
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to be superposed to Eq. (35) using the correct weight ratio
prior to the pre-elimination of the pulses.

Let us conclude this section with a few comments concern-
ing a class of methods determining the gravity field without
including orbit parameters in the estimation process. The so-
called acceleration approach, applied to observations from
a single satellite, is used as an example, because it is very
transparent. One of the latest treatments of this method and
its application to GRACE data is due to Liu (2008).

We assume that the second derivatives of the position
vector have been observed (or derived by numerical differ-
entiation from kinematic positions). The CMA observation
equations for the accelerations referring to epoch tl follow
from Eq. (20) by taking twice the time derivative at tl :

6+3ns∑

k=1

∂ r̈(tl)
∂ok

· ok +
d∑

k=1

∂ r̈(tl)
∂qk

· qk − �r̈l = ṽl , (43)

where it was assumed that no arc-specific empirical dynamic
parameters were set up. �r̈l stands for the observed minus the
computed acceleration. The partial derivatives in the second
sum may be replaced by the right-hand sides of the variational
equations (14):

∂ r̈(tl)
∂qk

= ∂f(tl)
∂r(tl)

· ∂r(tl)
∂qk

+ ∂f(tl)
∂ ṙ(tl)

· ∂ ṙ(tl)
∂qk

+ ∂f(tl)
∂qk

, (44)

where use was made of Eq. (15). The observation equations
used in the acceleration approach simply read as:

d∑

k=1

∂f(tl)
∂qk

· qk − �r̈l = vl . (45)

When using an a priori orbit solving the equations of motion
parameterized with the parameters ok, k = 1, 2, . . . , 6+3ns ,
Eq. (45) implies from the standpoint of the CMA that the fol-
lowing approximation was made:

6+3ns∑

k=1

∂ r̈(tl)
∂ok

· ok +
d∑

k=1

[
∂f(tl)
∂r(tl)

· ∂r(tl)
∂qk

+ ∂f(tl)
∂ ṙ(tl)

· ∂ ṙ(tl)
∂qk

]

·qk
.= 0. (46)

The acceleration method thus assumes that the changes in
the second derivatives of the orbit caused by the estimated
gravity field parameters qk are counterbalanced by changes
of the second derivatives of the orbit due to the changes in the
arc-specific parameters ok . The assumption is obviously met
if the a priori orbit used to compute �r̈l in the acceleration
approach equals the estimated a posteriori orbit resulting in
the CMA. If this is not the case, the assumption cannot be
met precisely. The actual error introduced into the observa-
tion equations of the acceleration method on top of the inevi-
table linearization error depends on the quality of the a priori
orbit. The method is successfully used to analyze CHAMP

and GRACE data by Liu (2008) and others, indicating that
the neglect may be acceptably small for certain applications.

The acceleration approach was developed “…to avoid
costly computations employed in conventional techniques
(e.g., computing the partial derivatives which require a
numerical integration of variation equations) …” Liu (2008).
In Sect. 3.7 it was, however, shown that the solution of the
variational equations, as performed in the CMA, is neither
time consuming nor costly for dynamical parameters includ-
ing gravity field parameters.

5 Summary and conclusions

The key issues of celestial mechanics related to orbit and
gravity field estimation were outlined in Sect. 2, the specific
characteristics of the CMA and its responses to the mentioned
issues of celestial mechanics were developed in Sect. 3.

The CMA is designed for orbit and gravity field determi-
nation of constellations of satellites using kinematic positions
determined by GPS as pseudo-observations and ultra-precise
inter-satellite measurements.

Gravity field coefficients, range biases, initial osculat-
ing elements, empirical dynamic parameters, accelerometer-
specific parameters, regularly spaced pseudo-stochastic
parameters, either pulses or constant accelerations, may be
set up in the R, S, and W directions. The latter parameters
may be constrained.

The variational equations associated with each parame-
ter are second-order linear differential equations, which are
solved very efficiently in the CMA: the solutions correspond-
ing to pseudo-stochastic pulses are obtained as linear com-
binations of the solutions of the six variational equations
associated with the initial osculating elements. The coeffi-
cients of the linear combination for each pulse are constant
and are derived from a system of six linear equations. The
solutions of all other variational equations (associated with
the gravity field, the accelerometers, and empirical dynamic
parameters) are also obtained as linear combinations of the
solutions of the six variational equations associated with the
six initial osculating elements, but the coefficients are func-
tions of time. The coefficients are obtained by numerical
quadrature. The time (CPU) required to solve the variational
equations is not an important issue in the CMA.

In order to allow for maximum flexibility all satellite-
specific parameters o1 and o2 are transformed according to
Eq. (33) to give the mean value p1 and half of their difference
p2 as a result.

Figure 1 in Sect. 2 shows that even very small, normally
distributed stochastic variations of the acceleration field may
have a seizable influence on the orbits, thus also on the mea-
sured inter-satellite distances and therefore should be con-
sidered together with the noise characteristics of the other
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measurements (range and GPS-derived observations). Note,
that the experiment documented by Fig. 1 was based, as stated
in Sect. 2, on simplifying assumptions. An in-depth analysis
should not be based simply on a comparison of RMS values of
the involved observations, because of a possible dependency
of noise on frequency. Such an analysis should include the
power spectral densities of the range (or the range-rate), the
accelerometer, and the GPS-related observables.

In the CMA the perturbations with periods longer than
the spacing between the pseudo-stochastic parameters are to
a great extent absorbed by the pseudo-stochastic parameters,
either pulses of piece-wise constant accelerations. Beutler
et al. (2010) illustrate many of the key components of the
CMA using a limited amount of data of the GRACE mission.
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