1,771 research outputs found

    The Graduate Program in Folk Studies at Western Kentucky University

    Get PDF
    Practical Guides to Studying Folklor

    Folk Custom as a Barometer of Social Change in a Tennessee Community

    Get PDF
    Using the techniques of oral history, residents of the Cypress Creeks area of southwestern middle Tennessee were questioned about their perceptions of the social change since 1940. In that year, the National Park Service hired men in the area to help snake out logs for the Natchez Trace Parkway\u27s right-of-way. For most men in the area, the temporary positions on the Trace were the first public jobs they ever had. After these positions were no longer needed, outmigration brought residents north to factory-cities; thus, the building of the parkway remains a watershed in residents\u27 memories as the benchmark when change began. In this study I examined oral material concerning pre- and post-change periods, to see how social change is articulated in people\u27s talk about changes in social folk custom. Moreover, it was found that residents today regret the sense of loss associated with the good old days and that this abstract loss is most easily expressed by talking about the concrete changes in the area\u27s customs

    A Metacognitive Perspective on the Cognitive Deficits Experienced in Intellectually Threatening Environments

    Get PDF
    Three studies tested the hypothesis that negative metacognitive interpretations of anxious arousal under stereotype threat create cognitive deficits in intellectually threatening environments. Study 1 showed that among minority and White undergraduates, anxiety about an intelligence test predicted lower working memory when participants were primed with doubt as compared to confidence. Study 2 replicated this pattern with women and showed it to be unique to intellectually threatening environments. Study 3 used emotional reappraisal as an individual difference measure of the tendency to metacognitively reinterpret negative emotions and found that when sympathetic activation was high (indexed by salivary alpha-amylase), women who tended to reappraise negative feelings performed better in math and felt less self-doubt than those low in reappraisal. Overall, findings highlight how metacognitive interpretations of affect can undermine cognitive efficiency under stereotype threat and offer implications for the situational and individual difference variables that buffer people from these effects.Psycholog

    Design of a Bayesian adaptive phase 2 proof-of-concept trial for BAN2401, a putative disease-modifying monoclonal antibody for the treatment of Alzheimer's disease

    Get PDF
    AbstractIntroductionRecent failures in phase 3 clinical trials in Alzheimer's disease (AD) suggest that novel approaches to drug development are urgently needed. Phase 3 risk can be mitigated by ensuring that clinical efficacy is established before initiating confirmatory trials, but traditional phase 2 trials in AD can be lengthy and costly.MethodsWe designed a Bayesian adaptive phase 2, proof-of-concept trial with a clinical endpoint to evaluate BAN2401, a monoclonal antibody targeting amyloid protofibrils. The study design used dose response and longitudinal modeling. Simulations were used to refine study design features to achieve optimal operating characteristics.ResultsThe study design includes five active treatment arms plus placebo, a clinical outcome, 12-month primary endpoint, and a maximum sample size of 800. The average overall probability of success is ≥80% when at least one dose shows a treatment effect that would be considered clinically meaningful. Using frequent interim analyses, the randomization ratios are adapted based on the clinical endpoint, and the trial can be stopped for success or futility before full enrollment.DiscussionBayesian statistics can enhance the efficiency of analyzing the study data. The adaptive randomization generates more data on doses that appear to be more efficacious, which can improve dose selection for phase 3. The interim analyses permit stopping as soon as a predefined signal is detected, which can accelerate decision making. Both features can reduce the size and duration of the trial. This study design can mitigate some of the risks associated with advancing to phase 3 in the absence of data demonstrating clinical efficacy. Limitations to the approach are discussed

    Southern Migrants, Northern Exiles

    Full text link

    Vortex Formation by Interference of Multiple Trapped Bose-Einstein Condensates

    Get PDF
    We report observations of vortex formation as a result of merging together multiple 87^{87}Rb Bose-Einstein condensates (BECs) in a confining potential. In this experiment, a trapping potential is partitioned into three sections by a barrier, enabling the simultaneous formation of three independent, uncorrelated condensates. The three condensates then merge together into one BEC, either by removal of the barrier, or during the final stages of evaporative cooling if the barrier energy is low enough; both processes can naturally produce vortices within the trapped BEC. We interpret the vortex formation mechanism as originating in interference between the initially independent condensates, with indeterminate relative phases between the three initial condensates and the condensate merging rate playing critical roles in the probability of observing vortices in the final, single BEC.Comment: 5 pages, 3 figure

    Parameter estimation on gravitational waves from neutron-star binaries with spinning components

    Get PDF
    Inspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. We investigate how well we could hope to measure properties of these binaries using the Advanced LIGO detectors, which began operation in September 2015. We study an astrophysically motivated population of sources (binary components with masses 1.2 M⊙1.2~\mathrm{M}_\odot--1.6 M⊙1.6~\mathrm{M}_\odot and spins of less than 0.050.05) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential binary neutron-star sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertainties in component masses of ∼16%\sim 16\%, with little constraint on spins (the median 90%90\% upper limit on the spin of the more massive component is ∼0.7\sim 0.7). Stronger prior constraints on neutron-star spins can further constrain mass estimates, but only marginally. However, we find that the sky position and luminosity distance for these sources are not influenced by the inclusion of spin; therefore, if LIGO detects a low-spin population of BNS sources, less computationally expensive results calculated neglecting spin will be sufficient for guiding electromagnetic follow-up.Comment: 10 pages, 9 figure

    Parameter Estimation for Binary Neutron-star Coalescences with Realistic Noise during the Advanced LIGO Era

    Get PDF
    Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than 10^(-3) M_☉. The median 90% (50%) credible region for sky localization is ~ 600 deg^2 (~150 deg^2), with 3% (30%) of detected events localized within 100 deg^2. Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible
    • …
    corecore