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Abstract Introduction: Recent failures in phase 3 clinical trials in Alzheimer’s disease (AD) suggest that
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novel approaches to drug development are urgently needed. Phase 3 risk can be mitigated by ensuring
that clinical efficacy is established before initiating confirmatory trials, but traditional phase 2 trials in
AD can be lengthy and costly.
Methods: We designed a Bayesian adaptive phase 2, proof-of-concept trial with a clinical endpoint
to evaluate BAN2401, a monoclonal antibody targeting amyloid protofibrils. The study design used
dose response and longitudinal modeling. Simulations were used to refine study design features to
achieve optimal operating characteristics.
Results: The study design includes five active treatment arms plus placebo, a clinical outcome, 12-
month primary endpoint, and a maximum sample size of 800. The average overall probability of suc-
cess is �80% when at least one dose shows a treatment effect that would be considered clinically
meaningful. Using frequent interim analyses, the randomization ratios are adapted based on the clin-
ical endpoint, and the trial can be stopped for success or futility before full enrollment.
Discussion: Bayesian statistics can enhance the efficiency of analyzing the study data. The adaptive
randomization generates more data on doses that appear to be more efficacious, which can improve
dose selection for phase 3. The interim analyses permit stopping as soon as a predefined signal is de-
tected, which can accelerate decisionmaking. Both features can reduce the size and duration of the trial.
This study design can mitigate some of the risks associated with advancing to phase 3 in the absence of
data demonstrating clinical efficacy. Limitations to the approach are discussed.
� 2016 Eisai, Inc. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Bayesian analysis; Adaptive trial; Alzheimer’s disease; Interim analysis; Monoclonal antibody; Clinical trial
simulation
1. Introduction

The last 16 putative disease-modifying agents for
Alzheimer’s disease (AD) failed to meet the primary efficacy
objective in phase 3 trials (Table 1) [1–34].
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Traditionally, confirmatory phase 3 trials follow success-
ful phase 2 studies. The goals of phase 2 include establishing
proof-of-concept using an endpoint that is appropriate for
phase 3 or a suitable surrogate, demonstrating a dose-
response that can be used to select the doses for phase 3,
and assessing the magnitude of the treatment effect, so phase
3 studies can be appropriately powered.

This traditional strategy has not been followed in many
recent AD projects for disease-modifying drugs [34].
Instead, small phase 2 studies using biomarker endpoints
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Table 1

Summary of phase 2 and 3 trials of putative disease-modifying agents for the treatment of Alzheimer’s Disease

Study agent Phase Subjects/arms Duration Outcome/comment Reference

Atorvastatin 2 67/2 12 mo Significant difference from placebo for ADAS-Cog seen at

6 months with trend toward significance for ADAS-Cog, CIBIC

and NPI at 12 mo. No deterioration in cognitive and functional

tests

[2]

3 640/2 72 wk No treatment benefit on ADAS-Cog or CGIC [3]

Bapineuzumab 2 234/5 18 mo No change on primary outcomes: ADAS-Cog11 and DAD

Positive trend for cognition in Apoε4-completers when all dose

cohorts combined

Trend for reduction in CSF p-tau

[4]

3 4000 in four studies

1. 1121/2

2. 1331/2

3. 835/3

4. 1099/2

78 wk Negative overall on ADAS-Cog11 and DAD in first two studies

Project discontinued after first two studies reported

[5]

Indomethacin 2 51/2 12 mo No treatment benefit on ADAS-Cog or other cognitive measures;

results deemed inconclusive

Study was underpowered due to high dropout rate

[6]

3 160 (estimated)/2 12 mo Study completed. No results reported NCT00432081

IVIG 2 24/2 6 mo Statistically superior CGIC and numerically superior ADAS-Cog [7]

2 58/8 6 mo No positive clinical outcomes [8]

3 390/3 18 mo No treatment benefit on ADAS-Cog or ADCS-ADL [9]

Latrepirdine/

dimebon

2 183/2 26 wk Significant difference from placebo on ADAS-Cog

No biomarker analyses performed

[10]

3 598/3 26 wk No treatment benefit on ADAS-Cog or CIBIC1 [11]

Naproxen 2/3 351/3 12 mo No treatment benefit on ADAS-Cog [12]

3 2528/3 5–7 y No treatment benefit on cognition; possible detrimental effect

Study terminated early due to reported cardiovascular risk with

celecoxib in another trial

[13]

Phenserine 2b 20/2 6 mo Reduced CSF Ab levels; significant effect on composite

neuropsychological test

[14]

3 384/3 6 mo No significant treatment benefit on ADAS-Cog or CIBIC

Developmental program terminated

[15,16]

Rosiglitazone 2 30/2 6 mo Decreased plasma Ab in placebo group; improved delayed recall

and selective attention in treatment group

[17]

3 693/4 24 wk No treatment benefit on ADAS-Cog or CIBIC1 [18]

Semagacestat 2 51/2 14 wk Reduction in plasma Ab40; no change in CSF Ab

Suggestion of cognitive worsening

[19]

3 2600 in two studies

1. 1537/3

2. 1111/2

21 mo Deterioration on primary outcomes: ADAS-Cog11 and ADCS-

ADL studies stopped at interim analysis

[20]

NCT00762411

Simvastatin 2 44/2 26 wk No overall change in CSF Ab40/42 levels; post-hoc analysis

showed decreased CSF Ab40 in mild AD

[21]

3 400/2 18 mo No treatment benefit on ADAS-Cog [21]

Solanezumab 2 52/5 12 wk Dose-dependent increases of various Ab species in plasma and

CSF but no effects on the ADAS-Cog

[22]

3 2000 in two studies

1. 1012/2

2. 1040/2

18 mo Negative overall on primary outcomes: ADAS-Cog11 and ADCS-

ADL

Preplanned analysis of combined study populations showed 34%

reduction in rate of cognitive decline

Additional phase 3 program initiated based on this analysis

[23]

3 Ongoing

w2100/2

18 mo Primary endpoints: ADAS-Cog14; ADCS-iADL NCT01900665

2/3 Ongoing

w210/4

24 mo Primary endpoint: changes in Ab species NCT01760005

3 Ongoing_

w1150/2

168 wk Primary endpoint: ADCS-PACC NCT02008357

Tarenflurbil 2 210/3 12 mo Overall negative on primary endpoints: ADAS-Cog, ADCS-ADL,

CDR-SB

Benefit on function in high-dose subjects with mild dementia at

study entry

[24]

3 1684/2 18 mo No treatment benefit on ADAS-Cog or ADCS-ADL [25]

(Continued )
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Table 1

Summary of phase 2 and 3 trials of putative disease-modifying agents for the treatment of Alzheimer’s Disease (Continued )

Study agent Phase Subjects/arms Duration Outcome/comment Reference

Tramiprosate/

Alzhemed

2 58/4 12 wk Reduction in CSF Ab42 [26]

3 1052/3 18 mo A trend toward improvement on ADAS-Cog; no change on CDR-

sb

[27]

Valproate 2 n/a No phase 2 performed. Hypothesized to have neuroprotective

effects; further study implemented by ADCS

[28]

3 313/2 24 mo No clinical benefits of treatment; significant adverse events [29]

VP4896 (leuprolide

acetate, Memryte)

2 109 females/3

w90 males/3

48 wk No treatment benefit on ADAS-Cog, ADCS-CGIC, or ADCS-

ADL; subgroup of one study (women) showed maintenance of

scores in latter 24 weeks

[30]

NCT00076440

3 555 (estimated)/

not provided

50 wk Completed but data not reported NCT00231946

Xaliproden 2 n/a No phase 2 studies conducted in AD; proposed use in AD based on

5-HT1A antagonist mechanism

[16]

3 2700 in two studies

1. 1455/2

2. 1306/2

18 mo No treatment effect on ADAS-Cog or CDR; less hippocampal

atrophy reported in subset of one study

Development program discontinued

[16,31,32]
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led directly to phase 3 trials (Table 1) [35,36]. These trials
were generally underpowered to detect changes in clinical
endpoints. Although biomarkers can indicate target
engagement, this evidence alone is not sufficient to predict
clinical effect and should not be used to advance a
compound into phase 3 without evidence that the
treatment’s effect on the biomarker translates into a
beneficial clinical effect. Although there are many possible
reasons for the recent failed phase 3 trials of amyloid-
based treatments, such as inclusion of patients at advanced
stages of disease, one possible reason is the lack of clear ev-
idence for an effect on a clinical endpoint in phase 2, leading
to unsupported decisions to enter phase 3. To improve the
success rate in phase 3 for a disease-modifying drug in
AD, phase 2 trials should demonstrate a relevant treatment
effect on a clinical endpoint.

AD trials using clinical endpoints will be larger and
longer than those using biomarker endpoints for two reasons.
First, clinical assessments of AD symptoms and progression
have higher variability than biomarker assessments [37].
Second, disease-modifying AD therapies are generally
tested earlier in the disease, when clinical progression is
slower [38]. Thus, conducting traditional phase 2 clinical tri-
als for disease-modifying therapies in AD is lengthy and
costly. These considerations may have led companies to
rely on data from smaller phase 2 studies using biomarker
endpoints for decision making about entry into phase 3
and the design of phase 3 studies, with outcomes that have
so far suggested the risk inherent in this approach.

Different trial designs are needed so that trials with clin-
ical endpoints can be conducted more efficiently. An adap-
tive design can minimize the overall sample size and study
duration by stopping recruitment early in response to strong
signals of success or futility based on regular interim ana-
lyses (IAs) [39–41]. This approach can be enhanced by
using the emerging data to adjust the randomization ratios
to assign more subjects to doses that appear more
efficacious, and fewer to doses that are less effective. This
reduces the overall sample size and speeds recruitment by
increasing the attractiveness of the trial to health
authorities, IRBs, investigators, and subjects.

An important challenge of adaptive trials in AD is the dif-
ficulty of assessing the outcome measure early enough so
modifications of the randomization can occur well before
recruitment is complete [39,42]. In AD, where the clinical
drug effect may not be seen for a long time, the theoretical
advantages of adaptation have not been considered
practical. This challenge can be met using a Bayesian
design in which all available longitudinal data from the
ongoing study are analyzed, with imputation of missing
endpoint data based on the longitudinal model, so that
response adaptive randomization and detection of signals
predictive of 12-month success or futility can occur based
on IAs before all subjects reach trial completion [42,43].
Early endpoints need not be surrogates for later endpoints
to be used for imputation because this data-driven approach
is not dependent on clinical hypotheses about the relation-
ship of the endpoints. The longitudinal model is updated us-
ing data accruing in the trial, with correlations between
observations at different time points informing the model.
This approach results in a more efficient use of the data,
leading to faster and more accurate decision making.

Based on these ideas, we designed a Bayesian adaptive
phase 2, proof-of-concept trial with a clinical endpoint to
evaluate BAN2401, a monoclonal antibody against amyloid
protofibrils. This trial is currently underway (ClinicalTrials.
gov identifier: NCT01767311).
2. Methods

2.1. Study objective

The primary objective of this study is to establish the
effective dose 90% (ED90) on the Alzheimer’s Disease

http://ClinicalTrials.gov
http://ClinicalTrials.gov
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Composite Clinical Score (ADCOMS) [44] at 12 months of
treatment in subjects with early AD, defined as meeting
NIA-AA criteria for mild cognitive impairment due to
AD–intermediate likelihood or mild AD dementia. All sub-
jects must have evidence for brain amyloid. These subjects
are believed most likely to respond to an agent that neutral-
izes and clears toxic amyloid protofibrils in the brain. The
ED90 for BAN2401 is defined as the simplest dose that
achieves �90% of the treatment effect achieved by the
maximum effective dose, where the simplest dose is defined
as the smallest dose with the lowest frequency of administra-
tion. ADCOMS is a novel instrument developed to improve
the sensitivity of currently available cognitive and functional
measures for subjects in the prodromal stage of AD. Based
on the antibody pharmacokinetics, preclinical pharma-
cology, and safety results from phase I studies, we chose
doses of 5 and 10 mg/kg monthly, and 2.5, 5, and 10 mg/
kg biweekly, administered intravenously [45].
2.2. Fixed trial characteristics

The primary endpoint is change in ADCOMS from base-
line to 52 weeks, which is considered long enough to detect
clinically relevant changes. Follow-up continues through
18 months of treatment to detect effects on neuroimaging
biomarkers, persistence of the clinical effect, or a pattern
of longitudinal change suggestive of a disease-modifying ef-
fect. Efficacy assessments are performed at 13, 27, 39, and
52 weeks. We assumed a maximal recruitment rate of 32
subjects per month and a 20% dropout rate by 52 weeks.

We hypothesized a treatment effect equivalent to a 25%
reduction in the rate of decline over 1 year. This effect was
chosen to reflect a clinically significant difference (CSD)
from placebo.
2.3. General approach to designing the adaptive trial

The prospectively defined adaptive features were
response adaptive randomization and early termination of
the study for futility or a strong signal for success. Both ad-
aptations are based on the results of frequent IAs.

Adaptive randomization begins after a fixed allocation
period. At each IA, the adaptive randomization probability
for each of the five active doses changes based on the prob-
ability of each being the ED90. The adaptive randomization
probability for placebo mirrors the probability for the most
likely ED90.

Efficacy is tested against predefined stopping rules for fu-
tility or study success at each IA. The prespecified algorithm
is run at each IA, the randomization probabilities are adapt-
ed, and the stopping rules are applied without any unblinding
by study personnel.

Modeling and simulation were used to design this
Bayesian adaptive trial. There are two major components
to the modeling. The first is the modeling of the mean change
from baseline to week 52 for each treatment arm. This model
is informed by a second, longitudinal model that captures the
correlations between early visits and the 52-week outcome.
These two models work simultaneously to jointly estimate
the primary endpoint effect size for each treatment arm at
52 weeks.

The dose-frequency response model and the longitudinal
model were prospectively defined as part of the trial’s
design. They are stochastic models in that they have un-
known parameters with probability distributions. These
prior probability distributions were specified in advance
and are updated as the trial proceeds and information accrues
about each subject’s outcome. This updating is Bayesian in
nature.

Many iterations of the trial were simulated before final-
izing the design. We assigned particular sets of numerical
values to the parameters in the models and simulated an
entire trial for many such sets to test a design’s perfor-
mance. Using the particular numerical values of the param-
eters, we generated each virtual subject’s outcomes,
including longitudinal outcomes, depending on the partic-
ular dose assigned to that subject. The computer algorithm
that is the trial’s design was not privy to the values of the
parameters that generated the subject outcomes but only to
the subject outcomes themselves, just as in the actual trial.
The point of these simulations was to see how well a
design was able to estimate the true values of the parame-
ters. As these true values were known, we could compare
them with the results of the simulations. Of course, in
the actual trial, the true values of the parameters are not
known.
2.4. Dose-frequency response model

A dose-frequency response model was constructed for the
mean change from baseline to 52 weeks for each treatment
arm (see Appendix A). The arms were modeled with a
two-dimensional first-order normal dynamic linear model
[46,47]. This model is a Gaussian random walk model
over the dimension of dose and, separately, frequency of
dose. The model allows a borrowing or smoothing of the
52-week effect size across neighboring doses and fre-
quencies to provide a superior estimate of each treatment
arm’s effect. Prior distributions were set for the mean
response for each dose and the error variance. The priors
were set to be weak to allow the emerging data to shape
the dose-frequency response model.
2.5. Longitudinal model

To allow the dose-frequency response model to be up-
dated at each IA before 52-week data from all subjects are
available, a linear regression longitudinal model was created
for the correlation between the 6-week, 13-week, 27-week,
and 39-week ADCOMS values and the 52-week value (see
Appendix A). Themodel was built to learn from the accruing
information during the course of the trial on the observed
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correlation between the earlier values and the 52-week pri-
mary value using Bayesian imputation within Markov chain
Monte Carlo, to impute the 52-week data and update the
dose-frequency response model at each IA. The joint
modeling is done using imputations within the longitudinal
model to allow joint estimation of the dose-frequency
response [47,48]. The prior distributions were selected
from historical data (mean slope of 0.80) as empirically
based starting values but were kept weak to allow the new
study data to shape the posterior distribution.
2.6. Simulations used in the design of the trial

Simulations are a critical part of designing a Bayesian
adaptive trial: they allow a full exploration of the design
and the ability to calculate its operating characteristics,
as these are not available analytically as in a traditional,
fixed-design trial. Key operating characteristics of interest
were the type I error and the probabilities of futility, early
success, overall success, selecting each treatment arm for
phase 3, and success in a phase 3 confirmatory trial. The
simulated virtual trials allowed us to calculate the oper-
ating characteristics of the trial for a wide range of
possible dose-frequency response scenarios. Simulations
were used to iterate aspects of the design, including
maximum sample size, cut-offs for stopping rules, fre-
quency of IAs, and response adaptive randomization, to
achieve optimized operating characteristics. If, as new
design features were simulated, these did not result in an
optimal balancing of operating characteristics (e.g., be-
tween the probabilities of stopping for futility or early suc-
cess in different scenarios), the iterative process was
resumed to correct them [40,42]. This iterative design
process and exploration of operating characteristics were
used to create a final, completely prospectively defined
protocol [42,49,50].

Simulations were performed using scenarios that
included a strong null scenario, in which no dose had any ef-
fect, and a large number of dose-frequency response sce-
narios reflecting possible outcomes for relative efficacy
among the treatment arms and for when treatment effects
might emerge (see Appendix B). The scenarios in which
some doses are effective and some are not included five
exposure-response relationships: (1) linear dose-response
throughout the dose range; (2) linear dose-response that is
only seen above a threshold dose of 10 or 20 mg/kg/month;
(3) flat dose-response (all doses work equally well); (4) in-
verted U-shaped dose-response (intermediate doses have
the best effect, and a lesser effect is achieved with doses
that are either higher or lower); and (5) dose response based
on a need to maintain a minimum average drug concentra-
tion (biweekly dosing works better than monthly dosing).
Within each of these dose-frequency response pattern sce-
narios, we included several subscenarios with treatment ef-
fect magnitudes ranging from very weak to very strong
reductions in the rate of clinical decline.
Based on assumptions about the fraction of the 52-week
treatment effect that would be observed at each visit, we
chose three different longitudinal patterns of drug response:
(1) linear (assumes steady growth in treatment effect through
52 weeks; essentially, the pattern that should be seen if the
drug is disease-modifying); (2) symptomatic (most of the ef-
fect occurs in the first 12 weeks, then remains the same); and
(3) late-onset (which assumes that a certain amount of
amyloid-based toxicity must be cleared before a clinical ef-
fect is seen). Each dose-response scenario was simulated un-
der the assumption of each of these patterns of response.

An iterative simulation process was used to choose the fu-
tility and success boundaries. We defined futility as a prob-
ability,X% that any dose is better than placebo by the CSD
at an IA, and early success as a probability of�Y% that any
dose is better than placebo by the CSD. We simulated the
trial using a range of 2.5%–15% probability of no effect
for futility and 85%–99% probability that one dose was effi-
cacious for early success. Based on the simulations, we
chose boundaries that resulted in the most useful balance be-
tween improving trial efficiency and minimizing the risk of
making incorrect decisions about stopping the trial early (see
Fig. 1 and 2 for detailed examples; note that the type I error
rate of 16% in Fig. 2 is the result at the beginning of the
design process. After simulations led to improvements in
the initial design, the final type I error rate was about 10%).

Because enrollment in the study can be stopped once a
signal is reached at any IA, the actual sample size is not pre-
specified in a Bayesian adaptive trial. Instead, a maximum
sample size is chosen. Simulations were used to select the
maximum sample size of the trial. Sample sizes of 500–
900 were simulated. Under the stopping rules that provided
the most assurance of trial success, the best balance of power
and time to obtain a signal of success was seen with a
maximum sample size of 800. This maximum is also the
anticipated size of a traditional fixed-design trial, so that if
there is no interim signal for stopping, the trial will still
have power to achieve the objective once all subjects have
completed treatment.

Recruitment rate is an important factor in designing the
trial because it affects the amount of data that will be avail-
able at each interim analysis (i.e., because the IAs are con-
ducted after every 50 subjects are randomized, the
recruitment rate determines the treatment duration for sub-
jects previously randomized, and therefore, the total amount
of data available for analysis). Therefore, the improved effi-
ciency due to the Bayesian analyses is tempered as the
recruitment rate increases, such that the advantage of a faster
recruitment rate in accelerating the conduct of the trial is
somewhat lessened. Recruitment rate can therefore be
adjusted to maximize trial efficiency, and simulations can
be performed to determine the optimal recruitment rate.
However, in practice, recruitment is always challenging in
dementia trials, especially ones seeking subjects with pro-
dromal AD. Therefore, as noted above, we chose to fix the
recruitment rate at the maximum we expected to achieve.



Fig. 1. Simulating futility boundaries inmultiple dose and effect scenarios. Futility boundaries ranging from 2.5% to 15%were simulated for each scenario. The

results for two scenarios are shown: (A) null scenario and (B) a dose-response scenario in which one dose has a robust effect. Robust indicates a dose-response in

which the percentage reduction in decline relative to placebo for the 2.5-mg bimonthly, 5-mg bimonthly, 10-mg bimonthly, 5-mg monthly, and 10-mg monthly

doses are 17%, 33%, 50%, 17%, and 33%, respectively. Null scenario simulations showed that with a boundary of 15%, the cumulative probability of declaring

futility at the 13th IAwould be 54% (A). However, using the same boundary, futility could be declared 13% of the time in a scenario where a single dose had a

robust response (B), which was considered too risky. A boundary of 2.5%would reduce the probability of declaring futility to nearly zero in the event of a robust

response for one dose (B) but would only permit stopping for futility in the null scenario 13% of the time (A). A boundary of 7.5% would permit stopping for

futility 32% of the time in the null scenario (A), while only incorrectly declaring futility 4% of the timewhen one dose actually had a robust effect (B). Based on

these simulation results, a futility boundary of 7.5% was chosen as providing the most acceptable balance of trial efficiency and risk. For the first three IAs (i.e.,

at 196, 250, and 300 subjects randomized), a more conservative futility boundary of 5% was chosen to further reduce the possibility of inappropriately stopping

early for futility at very early time points in the trial, when the decision would be based on more limited data.
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3. Results

The final study design, using five active treatment arms
and placebo, ADCOMS outcome measure, 12-month pri-
mary endpoint, and a maximum sample size of 800, has an
average overall probability of success of�80%when at least
one dose shows a treatment effect that would be considered
clinically meaningful.

In this phase 2 design, a type I error would be a deci-
sion to move to a phase 3 trial when there is no cognitive
benefit of the drug. Simulations of the possible outcomes
indicated that the type I error rate (one sided) is w10%,
which we considered acceptable for a proof-of-concept
trial. Note that, in a frequentist approach, the P value is
calculated using a test statistic based on the distribution
center at 0 under the null hypothesis, which is naturally
two sided, and a one-sided P value of 10% is equivalent
to a two-sided P value of 20%. However, the type I error
rate in this Bayesian adaptive trial is not based on any sta-
tistical test of significance, but simply on the false-
positive rate of success under the null hypothesis through
simulations. Therefore, in this Bayesian trial, the simu-
lated type I error rate is the experimental wise error
rate, which in this design is 10%.

The mean actual sample size averaged across all sce-
narios is expected to be 626. A decision on success or
failure, and therefore the opportunity to advance to phase
3 or discontinue the program would occur, on average,
17 months earlier than for a traditional trial with 800
subjects. This gain in efficiency is due not only to stop-
ping enrollment before the maximum sample size is
reached, but also to being able to declare success before
all subjects have completed the full 12 months of
treatment.

The protocol design is presented as a figure in Appendix
C. An example of a simulated virtual trial is presented in
Fig. 3. This example illustrates the response adaptive
randomization and emergence of potential signals of early
success or futility.

IAs occur when 196 subjects are enrolled, then 250,
and then every 50 subjects up to the maximum sample
size of 800. After 800 subjects have been randomized, if
neither boundary has been crossed, IAs occur every
3 months. The 52-week ADCOMS value is the driver of
all decisions and/or adaptations at each IA. For subjects
that do not yet have a 52-week observation, the 52-week
observation is calculated using multiple imputations
from the longitudinal model based on the most recent
observation. At each IA, a Bayesian analysis is used to
calculate the posterior distribution of the parameters in
the dose-frequency response model. Based on these distri-
butions, 10,000 dose-response curves are sampled. The
maximum effective dose and the ED90 for each of these
curves are identified. The proportion of simulated dose–
frequency response curves where a given arm is the
maximum effective dose is the posterior probability that
that dose is the maximum effective dose. Similarly, the



Fig. 2. Simulating early success boundaries in multiple dose and effect scenarios. Early success boundaries ranging from 85% to 99% were simulated for each

scenario. The results for two scenarios are shown: (A) null scenario and (B) dose-response scenario in which one dose has a robust effect. Robust indicates a

dose-response in which the percentage reduction in decline relative to placebo for the 2.5-mg bimonthly, 5-mg bimonthly, 10-mg bimonthly, 5-mgmonthly, and

10-mgmonthly doses are 17%, 33%, 50%, 17%, and 33%, respectively.With a success boundary of 85%, the cumulative probability of declaring early success at

the 13th IAwas 79% if one dose had a robust effect (B), but this boundary would result in success being declared 29% of the time in the null scenario (A), which

was considered too risky. A success boundary of 99% would reduce the incorrect declaration of success in the null scenario to 3% (A) but would only permit

stopping early for success when one dose had a robust effect 28% of the time (B). A success boundary of 95%would declare early success 56% of the timewhen

one dose had a robust effect (B), while incorrectly declaring success 16% of the time in the null scenario (A). Based on these simulation results, an early success

boundary of 95% was chosen as providing the most acceptable balance of trial efficiency and risk.
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proportion of simulated dose–frequency response curves
where a given arm is the ED90 is the posterior probability
that that dose is the ED90. These probabilities are used for
an algorithm-determined adjustment of the randomization
allocation probabilities, implemented in a computerized
system that automatically assigns treatments to subse-
quent subjects without unblinding any study or sponsor
personnel or the study investigators.

Similarly, for each active treatment arm, the posterior dis-
tribution of the mean change from baseline to 52 weeks is
compared with placebo to calculate the posterior probability
of being superior to placebo and of being superior to placebo
by at least the CSD. These probabilities are used to deter-
mine whether the trial has met the predefined criteria for
early stopping.

Interim monitoring for futility begins at the first IA and is
based on the dose identified as the most likely ED90. At the
first three IAs, if there is a,5% posterior probability that the
most likely ED90 is superior to placebo by the CSD, the trial
will stop early for futility. Beginning at the 350-subject IA,
and continuing to completion of the trial, the futility crite-
rion is increased to 7.5%. Thus, it becomes easier to stop
for futility once�350 subjects have been enrolled. If a signal
for futility is found, the sponsor is notified and the trial is
terminated.

Interim monitoring for early success occurs at each IA
beginning when 350 subjects have been enrolled. At this
point, if enrollment were to stop for early success, enough
subjects would be available to complete the trial so that
the full dose response could be modeled. If there is a
.95% posterior probability that the most likely ED90 is
better than placebo by the CSD, then early success is
declared. Enrollment is stopped, but all randomized subjects
continue for the full 18-month duration of the study.

If the trial is not stopped early for futility or success,
then trial success is evaluated at the completion of the
trial, when both accrual and follow-up for the primary
endpoint are complete. At that time, if there is a .80%
probability that the most likely ED90 is better than pla-
cebo by the CSD, the trial will be considered a success.
If the trial is stopped early for success, then a final anal-
ysis using the full 12-month data from all subjects serves
as a sensitivity analysis to confirm the result. Stopping
early for success means that there is a 95% probability
that the ED90 is better than placebo by the CSD. There-
fore, if this occurs, there is a very high likelihood of
achieving an 80% probability that the ED90 is better
than placebo by the CSD at the final analysis. However,
if the final sensitivity analysis does not confirm the result,
additional analyses of the data would be performed to
explain the discrepancy.

Unlike in a traditional trial, achieving study success is not
the same as meeting the primary objective. Although the pri-
mary objective in this study is met by identifying the ED90,
study success requires that this dose can achieve a clinically
meaningful treatment effect in a phase 3 study. In the phase
2 trial, success is defined as a drug effect that exceeds the
placebo rate by �25%, rather than only being superior to
placebo. We chose these criteria to ensure that any early
signal of success would likely indicate a robust treatment
effect. Thus, using the Bayesian adaptive design in phase
2, the risks of failure in phase 3 are mitigated.



Fig. 3. One simulation of a robust dose-response scenario, in which the trial is stopped early for success at 550 subjects. Robust dose-response scenario used is

the linear dose-response scenario with the largest response having�50% reduction in decline relative to placebo. During the study, IAs are carried out after 196

subjects are randomized (A), after 250 subjects, and every 50 subjects thereafter (B) until 800 subjects are recruited, after which IAs are carried out every 3

months, until 52-week data are available for all subjects. Based on the results of each IA, the study can be stopped early for success or futility. If the study

continues, the randomization ratios are adapted based on the effects of each dose on the ADCOMS (C). If the study achieves early success, recruitment is stopped

(D), and the study continues with enrolled subjects until 52-week data are collected for all subjects (E). Robust indicates a dose-response in which the percentage

reduction in decline relative to placebo for the 2.5-mg bimonthly, 5-mg bimonthly, 10-mg bimonthly, 5-mg monthly, and 10-mg monthly doses are 17%, 33%,

50%, 17%, and 33%, respectively.
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4. Discussion

Many recent failures in phase 3 studies of AD drugs can
be attributed to lack of robust phase 2 clinical results. Owing
to the long-term endpoint, large variability in disease pro-
gression, typically high dropout rates and limited size of
the potential treatment effect due to the nature of the drug
(disease modification), the outcomes from shorter and
smaller studies are likely to be misleadingly large or small.
However, traditional phase 2 studies have been avoided in
recent AD drug development because of concerns that they
are too large and costly. This risk is a major challenge in
developing disease-modifying drugs in AD. We believe
that the study described in this article permits the determina-
tion of clinical efficacy for a disease-modifying treatment
for AD in a trial of feasible size and duration by using a
Bayesian adaptive design. The results can be used for go/
no-go decisions on initiating phase 3 and to design phase 3
trials with a greater likelihood of success.

This trial design has numerous advantages over a tradi-
tional phase 2 proof-of-concept, dose-finding study and
over other statistical approaches. Each Bayesian IA uses
emerging data to update the joint posterior distribution of
the longitudinal model parameters, which improves the pre-
dictive power of IAs [39,41]. In this way, the regular IAs are
part of a learning process that improves the trial’s efficiency
in arriving at a stopping decision. This approach compensates
for the absence of good predictive biomarkers or a priori
evidence for the clinical effect of the study drug. A group
sequential trial design permits IAs for early stopping but
does not incorporate longitudinal data, a dose-response, or
response adaptive randomization [40,51,52].

The study can stop early, either for futility or success,
thereby avoiding unnecessary exposure of patients to an inef-
fective drug or accelerating the initiation of confirmatory tri-
als that can speed the availability of an effective drug to
patients who need it. This efficiency gain is due to the likeli-
hood that enrollment will complete before the 800 subject
maximum and due to the efficacy signal being detected
before all enrolled subjects have completed the full 12months
of treatment. If the drug is ineffective, the time and cost sav-
ings can be diverted to more promising therapies.

There are a number of limitations to the use of theBayesian
adaptive approach for clinical trials. AllBayesian analyses are
dependent on the choice of prior distributions, which can be
erroneous. In this trial, the prior distributions for the dose-
frequency response model and the longitudinal model were
kept weak so that the posterior distributions would be mostly
shaped by the emerging data. Our estimates of the operating
characteristics were based on simulations of a range of
possible dose-frequency response scenarios, but these may
not have covered all possible scenarios, which could have
affected our estimate of power if the true dose-response sce-
nario was to be very different from what was simulated. Un-
derestimation of the dropout rate could also result in
underestimation of type I error rate. In addition, we could
not be certain that each of the simulated scenarioswas equally
likely, so it is possible that our estimate for the average ex-
pected sample size, which was not weighted, might not be ac-
curate. For these reasons, our estimates for the potential
efficiency gains that could be achieved with this study design
should be viewed with some caution. In addition, the conclu-
sions of the trial could be impacted by the possibility that ef-
fect sizes observed at early success might be larger than the
true effect size, resulting in a positive bias.

Designing a Bayesian adaptive trial requires extensive
planning [39]. The study teammust consider numerous sce-
narios for possible outcomes and must expend time and re-
sources on a lengthy iterative simulation process. It should
be noted, however, that all trials, whether adaptive or fixed,
should be simulated to ensure the effectiveness of the
design to achieve the study aims; this approach can mini-
mize the risk of inadequate phase 2 trials and costly phase
3 failures. Conducting an adaptive trial requires a rapid flow
of data from sites to the database so IAs can be performed in
real time to adjust the randomization ratios on schedule and
provide the study team with early stopping decisions if a
boundary is met. Drug use and availability must be tracked
more closely than for a traditional trial because of the ad-
justments in randomization ratios. Drug supplies may
need to be larger than for a traditional trial because of these
adjustments [39].

Regulators may be less familiar with these complex study
designs [39], although the Food and Drug Administration has
issued draft guidance [53]. Prior agreement with regulators
on the study design is helpful. Questions about the mainte-
nance of data integrity using this trial design are to be ex-
pected [40]. In the BAN2401 trial, once the protocol was
finalized, the sponsor (Eisai) has had no involvement with
the actual IAs. An independent monitoring committee and
statistical group are involved with the implementation of
the IAs, whereas Eisai and the investigators remain blinded
to study treatment and changes in randomization. These pro-
cedures mitigate the risks of any compromise to study data
integrity and maintain the type I error [40]. A properly con-
ducted Bayesian adaptive study that achieves robust positive
results on the primary endpoint could be discussed with reg-
ulators for possible use in supporting drug registration.

Two projects are underway to design standing adaptive
proof-of-concept trials of therapies for prevention of AD
(Innovative Medicines Initiative–European Prevention of
Alzheimer’s Dementia [IMI-EPAD] project; GAP [Global
Alzheimer’s Platform]) [54,55]. These efforts are led by
consortia with access to many potential drug candidates.
The design of the study described in this article could
provide a framework for the clinical trial design aspects of
these consortia projects.
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RESEARCH IN CONTEXT

1. Systematic review: A PubMed search was done to
identify clinical trials for putative disease-
modifying drugs for Alzheimer’s disease (AD). Tri-
als were reviewed for design, results, and the overall
compound clinical trial development program.

2. Interpretation: The study design described in this
article represents the first use of a Bayesian adaptive
clinical trial design for determining proof-of-concept
for a disease-modifying drug in AD. This design is
feasible, although the primary endpoint comes after a
year or more of treatment, and it can mitigate the
risks of starting large and costly phase 3 clinical trials
with limited data on clinical endpoints.

3. Future directions: The trial design described here
should be considered for future phase 2 studies in
AD or in other indications where the data needed
to design trials with a fixed design are not available
and initiation of large and costly phase 3 studies en-
tails high risk.
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