19 research outputs found

    Effectiveness of flufenacet in controlling resistant black-grass (Alopecurus myosuroides Huds.) – comparison of glasshouse and field trial results

    Get PDF
    In the last years in practice, soil acting herbicides have become the backbone for the control of heavy infestations of grass weed populations. The known unsteady efficacy of HRAC group K1, K3 and N herbicides is controversially discussed and became linked with the development of herbicide resistance. In general, the testing of soil-acting compounds even under controlled glasshouse conditions as well as the confirmation of possible resistance is difficult and needs specific methods and a careful result interpretation. The reliability of test methods is therefore of extreme importance. The reference testing procedure such as plant density, irrigation and temperature conditions have been shown to influence the activity of the soil applied herbicides and to result in extreme differences in the efficacy levels in general, but also in differences between resistant and susceptible biotypes.In our trials, the seed density could be ranked as the most sensitive factor. Of the tested products, Cadou SC was the most consistent herbicide followed by Boxer and Stomp Aqua. Possible reduced efficacy effects in glasshouse trials could not be verified by field trial results. The evaluation of field trials from Northern Germany did not show a significant decrease in sensitivity of black-grass (Alopecurus myosuroides Huds.) to flufenacet or flufenact plus diflufenican. It could be shown that seasonal variation in soil moisture, amount of rainfall, temperature conditions and application timing all influenced the efficacy level in the field the most. Keywords: Enhanced metabolic resistance, herbicide resistance, pendimethalin, prosulfocarb, soil herbicides, test methodologyWirksamkeit von Flufenacet in der Bekämpfung von resistentem Ackerfuchsschwanz (Alopecurus myosuroides Huds.) – Vergleich von Ergebnissen aus Gewächshaus- und FeldversuchenIn den letzten Jahren ist die Anwendung von Bodenherbiziden zu einem zentralen Baustein für die Bekämpfung von hohen Ungrasdichten in der landwirtschaftlichen Praxis geworden. Die schwankende Wirkungssicherheit der Bodenherbizide der HRAC Gruppen K1, K3 und N unter praktischen Feldbedingungen wird teilweise konträr diskutiert und oft mit einer möglichen Resistenzentwicklung in Zusammenhang gebracht. Die allgemeine Untersuchung der Wirksamkeit von Bodenherbiziden unter kontrollierten Gewächshausbedingungen ist schwierig und bedarf einer wirkstoffspezifischen Methodenanpassung und einer entsprechenden überlegten Ergebnisauswertung. Die Vertrauenswürdigkeit der Testmethode ist deshalb von besonderer Bedeutung. Die Vielzahl der Methodenparameter, wie unter anderem Pflanzendichte, Bewässerung und Temperaturbedingungen, beeinflussen die Wirksamkeit der Bodenherbizide und können zu hohen Wirkungsunterschieden im Allgemeinen, aber auch zu Unterschieden zwischen verschiedenen Populationen führen.In der Überprüfung der Methodenparameter stellte sich vor allem die Pflanzendichte als einflussreicher Faktor für die Wirkungsstärke der Bodenherbizide heraus. In der Reihenfolge der getesteten Produkte war Cadou SC das wirkungsstärkste und konsistenteste Produkt, gefolgt von Boxer und Stomp Aqua. Wirkungsunterschiede in den Gewächshausuntersuchungen konnten im Allgemeinen mit den Feldergebnissen nicht bestätigt werden. Eine Auswertung von Feldversuchen aus Resistenzgebieten in Norddeutschland zeigte in den letzten Jahren keine signifikante Abnahme der Wirksamkeit von Flufenacet oder Flufenacet plus Diflufenican in der Bekämpfungsleistung von Ackerfuchsschwanz (Alopecurus myosuroides Huds.). Jahreszeitliche Einflussfaktoren wie Bodenfeuchtigkeit, Niederschlagsereignisse, Temperaturbedingungen und das Wachstumsstadium der Ungräser zum Zeitpunkt der Applikation zeigten einen eindeutigen Einfluss auf die Wirksamkeit der Bodenherbizide. Stichwörter: Bodenherbizide, Herbizidresistenz, Metabolische Resistenz, Pendimethalin, Prosulfocarb, Untersuchungsmethode

    Status and development of ACCase and ALS inhibitor resistant black-grass (Alopecurus myosuroides Huds.) in neighboring fields in Germany

    Get PDF
    Neighboring fields in three local areas of southern Germany have been investigated for the infestation level and herbicide resistance structure of black-grass (Alopecurus myosuroides Huds.). One field within a local area, each with confirmed resistance, served as starting point to survey the surrounding fields. Eighty percent of the fields had very few black-grass ears prior to harvest, with mainly ears from single plants spread over the field. Infestation in the other fields was in large patches or widespread, yet in most situations it did not significantly impact on yield level. Resistance to ACCase-inhibiting herbicides was found on all tested fields in each region. Plants with a target-site mutation to ACCase inhibitors were found in all samples; in addition, most plants also exhibited non-target-site resistance. All five mutations conferring ACCase resistance were found. The diversity of the mutations between areas suggests that resistance evolved independently in most fields. At two locations, each one with confirmed ALS resistance, additional fields with reduced ALS efficacy were detected. At one location only the mutation P197T was found, at the second the W574L mutation was also found. Target-site resistance appears to be the major mechanism for these early cases of ALS inhibitor resistance. Understanding the resistance development in individual fields and the spatial dynamics requires investigation over several years. The example of ACCase resistance to black-grass demonstrates how a specific mode of action can be rendered ineffective over a whole region. It provides a possible model for ALS-inhibiting herbicides. In the current situation, farmers are able to manage the black-grass infestation quite well. Resistance in a field seems to develop first in patches with high population densities. Resistance management should therefore focus on the management of the seed bank of each field, using all measures to keep the population pressure low. Keywords: ACCase inhibitors, ALS inhibitors, blackgrass, Germany, non-target-site resistance, target-site resistanceStatus und Entwicklung von ACCase- und ALS-Inhibitor resistenten Ackerfuchsschwanz (Alopecurus myosuroides Huds.) in benachbarten Feldern in DeutschlandBenachbarte Felder aus drei Gebieten in Süddeutschland wurden auf Befall und Struktur von Herbizidresistenzen bei Ackerfuchsschwanz (Alopecurus myosuroides Huds.) untersucht. Jeweils ein Feld mit bestätigter Resistenz diente als Ausgangspunkt für die Untersuchung der umliegenden Felder. Auf 80 Prozent der Felder fanden sich nur sehr wenige Ähren von über das Feld verstreuten Einzelpflanzen. Der Befall auf den anderen Feldern war in größeren Flecken oder über das ganze Feld verteilt, meist ohne geschätzten Einfluss auf den Ertrag. Resistenz zu ACCase-Inhibitoren wurde auf jedem der Felder in jeder Region gefunden. In allen Proben wurden Pflanzen mit Target-Site Mutationen und solche mit Nicht-Target-Site Resistenzen gefunden. Alle fünf bekannten ACCase-Mutationen wurden gefunden. Die große Diversität der Mutationen lässt vermuten, dass sich die Resistenz unabhängig auf den einzelnen Feldern entwickelt hat. In zwei Gebieten gab es von Anfang an jeweils ein Feld mit bestätigter Resistenz gegen ALS-Inhibitoren. Hier wurde auf weiteren Feldern eine reduzierte Herbizidwirkung nachgewiesen. In einer Region wurde die Mutation P197T gefunden, zusätzlich die Mutation W574L auf den Feldern des zweiten Gebiets. Target-site Resistenz scheint die Hauptursache für diese frühe Phase der ALS-Resistenzentwicklung zu sein. Um die Resistenzentwicklung auf einzelnen Feldern und die Ausbreitung über ein ganzes Gebiet zu verstehen, bedarf es Daten mehrerer Jahre. Das Beispiel der Resistenz gegen ACCase Inhibitoren von Ackerfuchsschwanz demonstriert wie ein bestimmter Wirkmechanismus über ein weites Gebiet wirkungslos werden kann. Es ist ein mögliches Model für ALSinhibierende Herbizide. Gegenwärtig wird der Ackerfuchsschwanz in den untersuchten Gebieten von den Landwirten sehr gut bekämpft. Die Resistenzen scheinen sich zuerst auf Feldstellen mit hohen Populationsdichten zu entwickeln. Resistenzmanagement sollte daher an erster Stelle alle möglichen Maßnahmen umfassen, die den Samenvorrat im Boden niedrig halten. Stichwörter: ACCase-Inhibitoren, Ackerfuchsschwanz, ALS-Inhibitoren, Deutschland, Non-Target-Site Resistenz, Target-Site Resisten

    Weed resistance diagnostic technologies to detect herbicide resistance in cerealgrowing areas. A review

    Get PDF
    Cereals are major crops used for food and feed. By 2050, the world population is expected to be close to 10 billion requiring a doubling of the food production from a fixed area of arable land. The control of weeds in cropping systems is one key step to optimize yield. In the last several decades, herbicides have become the most effective management tool for adequate weed control. However, their repetitive use, as well as the limited number of modes of action (MoA) available, has led to the development of resistance in weeds. It has become imperative to change practices that lead to the development of weed resistance in order to protect those MoAs which are still effective in cereals. Several mechanisms of resistance have been developed by weeds to survive herbicide applications. Among them, gene mutations reducing or inhibiting herbicide binding by conferring amino-acid changes in a target enzyme (Target Site Resistance, TSR) and detoxification of the herbicide (Enhanced Metabolic Resistance, EMR) are the main mechanisms in key grass weeds found in cereal crops. These two mechanisms have been extensively studied during the last years and, thus, enabled the development of analytical tools for resistance diagnosis. Sustainable strategies for weed management using herbicides rely on accurate resistance diagnostics that permit optimization of treatment solutions that will lead to herbicide longevity. Greenhouse and laboratory tests used for resistance diagnosis will be reviewed with an emphasis on biochemical and molecular biology technologies. Cases of resistance to ACCase inhibitor herbicides will be presented as examples. Finally, the future development of these technologies will be discussed in the perspective of more practical uses.Keywords: ACCase, ALS, bioassays, HPLC analyses, non-target-site resistance, pyrosequencing, target-site resistanceDiagnosetechnologien zur Detektion von Herbizidresistenz im Getreideanbau . Ein ÜberblickGetreide ist zurzeit die wichtigste Grundlage für unsere Nahrungs- und Futtermittelproduktion. Die Getreideproduktion muss jedoch, im Hinblick auf den bis 2050 erwarteten weltweiten Bevölkerungsanstieg auf nahezu 10 Mrd. Menschen und die gleichbleibende landwirtschaftliche Nutzfläche, mindestens verdoppelt werden, um ausreichend Nahrungsmittel bereit zu stellen. Herbizide haben sich in den vergangenen Jahrzehnten zu einem der wichtigsten Instrumente der Unkrautbekämpfung entwickelt, da sie eine maßgebliche Möglichkeit darstellen den Ertrag zu steigern. In einigen Fällen allerdings, führt sowohl die wiederholte Anwendung von Herbiziden als auch die begrenzte Auswahl an verfügbaren herbiziden Wirkmechanismen (MoA) zu einer ernstzunehmenden Resistenzentwicklung in Unkräutern. Diese Entwicklung macht es erforderlich die Anwendung von Herbiziden so zu verändern, dass eine weitere Resistenzentwicklung vermieden wird und vorhandene Wirkstoffe auch in Zukunft der Unkrautbekämpfung im Getreide zur Verfügung stehen.Verschiedenste Resistenzmechanismen gegen Herbizide haben sich in Unkräutern herausselektiert und sind in den vergangenen Jahren intensiv untersucht worden. Dazu zählen in Getreideunkräutern vor allem die wirkortspezifische Resistenz (Target Site Resistenz, TSR) und die Metabolisierung von Wirkstoffen (Enhanced Metabolic Resistance, EMR oder Non-Target-Site Resistenz, NTSR). Die erarbeiteten Erkenntnisse lassen sich mittlerweile zuverlässig zur Resistenzdiagnose in Unkräutern verwenden. Zuverlässige Diagnoseverfahren für Herbizidresistenz bei Unkräutern werden insbesondere für die Entwicklung nachhaltiger Strategien im Unkrautmanagement und zur Verlängerung der Produktlebensdauer benötigt. Eine zuverlässige Diagnose hilft zudem in Problemfällen Herbizidapplikationen anpassen oder optimieren zu können.In dieser Studie werden schwerpunktmäßig biochemische und molekularbiologische Diagnosemethoden für Herbizidresistenz in Unkräutern aus Gewächshaus und Labor vorgestellt und am Beispiel ACCase resistenter Unkräuter verdeutlicht. Schließlich wird die zukünftige Entwicklung dieser Technologien im Zusammenhang mit der praktischen Anwendung diskutiert.Stichwörter: ACCase, ALS, Bioassay, HPLC-Metaboliten-Analytik, Non-Target-Site Resistenz, Pyrosequencing, Target-Site Resisten

    Identification of a 1-deoxy-D-xylulose-5-phosphate synthase (DXS) mutant with improved crystallographic properties

    Get PDF
    In this report, we describe a truncated Deinococcus radiodurans 1-deoxy-D-xylulose-5-phosphate synthase (DXS) protein that retains enzymatic activity, while slowing protein degradation and showing improved crystallization properties. With modern drug-design approaches relying heavily on the elucidation of atomic interactions of potential new drugs with their targets, the need for co-crystal structures with the compounds of interest is high. DXS itself is a promising drug target, as it catalyzes the first reaction in the 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway for the biosynthesis of the universal precursors of terpenes, which are essential secondary metabolites. In contrast to many bacteria and pathogens, which employ the MEP pathway, mammals use the distinct mevalonate-pathway for the biosynthesis of these precursors, which makes all enzymes of the MEP-pathway potential new targets for the development of anti-infectives. However, crystallization of DXS has proven to be challenging: while the first X-ray structures from Escherichia coli and D. radiodurans were solved in 2004, since then only two additions have been made in 2019 that were obtained under anoxic conditions. The presented site of truncation can potentially also be transferred to other homologues, opening up the possibility for the determination of crystal structures from pathogenic species, which until now could not be crystallized. This manuscript also provides a further example that truncation of a variable region of a protein can lead to improved structural data

    First crystal structures of 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis indicate a distinct mechanism of intermediate stabilization

    Get PDF
    The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the frst reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the frst DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main diference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a “fork-like” motif could be identifed in the enamine structure, using a diferent residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specifc for MtDXPS through structure-based drug design

    First crystal structures of 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis indicate a distinct mechanism of intermediate stabilization

    Get PDF
    The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-D-xylulose 5-phosphate synthase (DXPS) catalyzes the first reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the first DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main difference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a "fork-like" motif could be identified in the enamine structure, using a different residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specific for MtDXPS through structure-based drug design

    Slow-Binding Inhibition of Escherichia coli

    No full text

    Adenine Nucleotide Pool Perturbation Is a Metabolic Trigger for AMP Deaminase Inhibitor-Based Herbicide Toxicity

    No full text
    AMP deaminase (AMPD) is essential for plant life, but the underlying mechanisms responsible for lethality caused by genetic and herbicide-based limitations in catalytic activity are unknown. Deaminoformycin (DF) is a synthetic modified nucleoside that is taken up by plant cells and 5′-phosphorylated into a potent transition state-type inhibitor of AMPD. Systemic exposure of Arabidopsis (Arabidopsis thaliana) seedlings to DF results in dose-dependent (150–450 nm) and time-dependent decreases in plant growth that are accompanied by 2- to 5-fold increases in the intracellular concentrations of all adenine ribonucleotides. No measurable rescue is observed with either hypoxanthine or xanthine (250 μm), indicating that downstream effects of AMPD inhibition, such as limitations in adenine-to-guanine nucleotide conversion or ureide synthesis, do not play important roles in DF toxicity. However, adenine (250 μm) acts synergistically with a nontoxic dose of DF (150 nm) to produce growth inhibition and adenine nucleotide pool expansion comparable to that observed with a toxic concentration of the herbicide alone (300 nm). Conversely, adenine alone (60–250 μm) has no measurable effects on these parameters. These combined results support the hypothesis that AMPD is the primary intracellular target for this class of herbicides and strongly suggest that adenine nucleotide accumulation is a metabolic trigger for DF toxicity. AMP binds to 14-3-3 proteins and can interrupt client interactions that appear to drive their distributions. Trichome subcellular localization of the phi isoform is disrupted within 8 to 24 h after seedlings are semisubmersed in a solution of DF (100 nm), further suggesting that disrupted 14-3-3 protein function plays a role in the associated herbicidal activity
    corecore