2,359 research outputs found

    Tn-syndrome

    Get PDF
    AbstractThe idiopathic Tn-syndrome, formerly called ‘permanent mixed-field polyagglutinability’, is a rare hematological disorder characterized by the expression of the Tn-antigen on all blood cell lineages. The immunodominant epitope of the Tn-antigen is terminal α-N-acetylgalactosamine, O-glycosidically linked to protein. Normally this residue is 3′-substituted by β-galactose thereby forming the core 1 structure known as the Thomsen–Friedenreich (TF) antigen (Galβ1⇒3GalNAcα1⇒Thr/Ser). The cause of the exposure of the Tn-antigen appears to be due to the silencing of the gene expression of β1,3galactosyltransferase, since treatment of deficient Tn(+) lymphocyte T clones with 5′azacytidine or Na butyrate leads to reexpression of enzyme activity and the sialylated TF-antigen. The Tn-syndrome is acquired and permanent and affects both sexes at any age. Its origin is unknown. Pluripotent stem cells are affected since all lineages are involved but each one to a variable extent. Therefore, normal cells co-exist with Tn-transformed cells. Clinically, patients suffering from the Tn-syndrome appear healthy. Laboratory findings usually reveal moderate thrombocyto- and leukopenia and some signs of hemolytic anemia not warranting any treatment

    Trafficking and localization studies of recombinant α1,3-fucosyltransferase VI stably expressed in CHO cells

    Get PDF
    Peripheral α1,3-fucosylation of glycans occurs by the action of either one of five different α1,3-fucosyltransferases (Fuc-Ts) cloned to date. Fuc-TVI is one of the α1,3-fucosyltransferases which is capable to synthesize selectin ligands. The major α1,3-fucosyltransferase activity in human plasma is encoded by the gene for fucosyltransferase VI, which presumably originates from liver cells. While the sequence, chromosomal localization, and kinetic properties of Fuc-TVI are known, immunocytochemical localization and trafficking studies have been impossible because of the lack of specific antibodies. Here we report on the development and characterization of a peptide-specific polyclonal antiserum mono-specific to Fuc-TVI and an antiserum to purified soluble recombinant Fuc-TVI crossreactive with Fuc-TIII and Fuc-TV. Both antisera were applied for immunodetection in stably transfected CHO cells expressing the full-length form of this enzyme (CHO clone 61/11). Fuc-TVI was found to be a resident protein of the Golgi apparatus. In addition, more than 30% of cell-associated and released enzyme activity was found in the medium. Maturation and release of Fuc-TVI was analyzed in metabolically labeled CHO 61/11 cells followed by immunoprecipitation. Fuc-TVI occurred in two forms of 47 kDa and 43 kDa bands, while the secreted form was detected as a 43 kDa. These two different intracellular forms arose by posttranslational modification, as shown by pulse-chase experiments. Fuc-TVI was released to the supernatant by proteolytic cleavage as a partially endo-H resistant glycofor

    α1,3Fucosyltransferase VI is expressed in HepG2 cells and codistributed with β1,4galactosyltransferase I in the Golgi apparatus and monensin-induced swollen vesicles

    Get PDF
    The major α1,3fucosyltransferase activity in plasma, liver, and kidney is related to fucosyltransferase VI which is encoded by the FUT6 gene. Here we demonstrate the presence of α1,3fucosyltransferase VI (α3-FucT VI) in the human HepG2 hepatoma cell line by specific activity assays, detection of transcripts, and the use of specific antibodies. First, FucT activity in HepG2 cell lysates was shown to prefer sialyl-N-acetyllactosamine as acceptor substrate indicating expression of α3-FucT VI. RT-PCR analysis further confirmed the exclusive presence of the α3-FucT VI transcripts among the five human α3-FucTs cloned to date. α3-FucT VI was colocalized with β1,4galactosyltransferase I (β4-GalT I) to the Golgi apparatus by dual confocal immunostaining. Pulse/chase analysis of metabolically labeled α3-FucT VI showed maturation of α3-FucT VI from the early 43 kDa form to the mature, endoglycosidase H-resistant form of 47 kDa which was detected after 2 h of chase. α3-FucT VI was released to the medium and accounted for 50% of overall cell-associated and released enzyme activity. Release occurred by proteolytical cleavage which produced a soluble form of 43 kDa. Monensin treatment segregated α3-FucT VI from the Golgi apparatus to swollen peripheral vesicles where it was colocalized with β4-GalT I while α2,6(N)sialyltransferase remained associated with the Golgi apparatus. Both constitutive secretion of α3-FucT VI and its monensin-induced relocation to vesicles analogous to β4-GalT I suggest a similar post-Golgi pathway of both α3-FucT VI and β4-GalT

    Carbohydrate receptor-mediated gene transfer to human T leukaemic cells

    Get PDF
    The mucin-type carbohydrate Tn cryptantigen (GalNAcα1-O-Ser/Thr, where GalNAc is N-acetyl-D-galactosamine) is expressed in many carcinomas, in haemopoietic disorders including the Tn syndrome, and on human immunodeficiency virus (HIV) coat glycoproteins, but is not expressed on normal, differentiated cells because of the expression of a Tn-processing galactosyltransferase. Using Jurkat T leukaemic cells which express high levels of Tn antigen due to deficient Tn galactosylation, we have established the Tn antigen-mediated gene transfer and demonstrate the considerable efficiency of this approach. We used poly(L-lysine) conjugates of the monoclonal antibody 1E3 directed against the Tn antigen to deliver the luciferase and β-galactosidase reporter genes to Jurkat cells by receptor-mediated endocytosis. Addition of unconjugated 1E3 reduced transfection efficiency in a concentration-dependent manner and incubation with free GalNAc abolished DNA transfer completely, indicating that gene delivery is indeed mediated by the Tn antigen. Pre-treatment of Jurkat cells with Vibrio cholerae sialidase, which uncovers additional Tn antigens, resulted in an improvement of gene transfection. Both human and chicken adenovirus particles attached to the DNA/polylysine complex strongly augmented transgene expression. When the β-galactosidase (lacZ) gene was delivered to Jurkat cells by Tn-mediated endocytosis, up to 60% of the cells were positive in the cytochemical stain using 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) as a chromogenic substrate. The efficiency of the transferrin receptor-mediated DNA uptake into Jurkat cells was comparatively low, although these cells were shown to express considerable amounts of transferrin receptor. We show here that a mucin-type carbohydrate antigen mediates highly efficient DNA uptake by endocytosis into Jurkat T cells. This method represents a 50-fold improvement of Jurkat cell transfection efficiency over other physical gene transfer techniques. Specific gene delivery to primary cancer cells exhibiting Tn epitopes may especially be desirable in immunotherapy protocol

    Phenylacrylic acids addition to potato and sweet potato showed no impact on acrylamide concentration via oxa-Michael-addition during frying

    Get PDF
    Three phenolic acids, p-coumaric, ferulic and caffeic acid as well as cinnamic acid were added to raw potatoes and sweet potatoes before frying. A distinct mitigation of acrylamide was not detected. Fried samples were analysed for postulated adducts of a direct reaction between acrylamide and these phenolic acids using LC-MS. In a model system with pure compounds (phenylacrylic acid and acrylamide) heated on 10% hydrated silica gel one specific adduct (respective m/z for M ​+ ​H+) was formed in each reaction. MS/MS-data suggested an oxa-Michael formation of 3-amino-3-oxopropyl-phenylacrylates, which was confirmed by de novo syntheses along an SN2 substitution of 3-chloropropanamide. Exemplarily, the structure of the ester was confirmed for p-coumaric acid by NMR-data. Standard addition revealed that 3-amino-(3-oxopropyl-phenyl)-acrylates occurred neither in fried potato nor in sweet potato, while a formation was shown in phenylacrylic acid plus acrylamide supplemented potatoes and sweet potatoes

    ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg

    Get PDF
    In the endoplasmic reticulum (ER) of eukaryotes, N-linked glycans are first assembled on the lipid carrier dolichyl pyrophosphate. The GlcNAc2Man9Glc3 oligosaccharide is transferred to selected asparagine residues of nascent polypeptides. Defects along the biosynthetic pathway of N-glycans are associated with severe multisystemic syndromes called congenital disorders of glycosylation. Here, we describe a deficiency in the ALG12 ER α1,6-mannosyltransferase resulting in a novel type of glycosylation disorder. The severe disease was identified in a child presenting with psychomotor retardation, hypotonia, growth retardation, dysmorphic features and anorexia. In the patient's fibroblasts, the biosynthetic intermediate GlcNAc2Man7 oligosaccharide was detected both on the lipid carrier dolichyl pyrophosphate and on newly synthesized glycoproteins, thus pointing to a defect in the dolichyl pyrophosphate-GlcNAc2Man7-dependent ALG12 α1,6 mannosyltransferase. Analysis of the ALG12 cDNA in the CDG patient revealed compound heterozygosity for two point mutations that resulted in the amino acid substitutions T67M and R146Q, respectively. The impact of these mutations on ALG12 protein function was investigated in the Saccharomyces cerevisiae alg12 glycosylation mutant by showing that the yeast ALG12 gene bearing the homologous mutations T61M and R161Q and the human mutant ALG12 cDNA alleles failed to normalize the growth defect phenotype of the alg12 yeast model, whereas expression of the normal ALG12 cDNA complemented the yeast mutation. The ALG12 mannosyltransferase defect defines a new type of congenital disorder of glycosylation, designated CDG-I

    Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik

    Get PDF
    Defects of N-linked glycosylation represent diseases with multiple organ involvements that are classified as congenital disorders of glycosylation (CDG). In recent years, several CDG types have been attributed to defects of dolichol-linked oligosaccharide assembly in the endoplasmic reticulum. The profiling of [3H]mannose-labeled lipid-linked oligosaccharides was instrumental in identifying most of these glycosylation disorders. However, this method is poorly suited for the identification of short lipid-linked oligosaccharide biosynthesis defects. To adequately resolve deficiencies affecting the first steps of lipid-linked oligosaccharide formation, we have used a non-radioactive procedure employing the fluorescence detection of 2-aminobenzamide-coupled oligosaccharides after HPLC separation. By applying this method, we have detected the accumulation of dolichylpyrophosphate-GlcNAc2 in a previously untyped CDG patient. The accumulation pattern suggested a deficiency of the ALG1 β1,4 mannosyltransferase, which adds the first mannose residue to lipid-linked oligosaccharides. This was supported by the finding that this CDG patient was compound heterozygous for three mutations in the ALG1 gene, leading to the amino acid substitutions S150R and D429E on one allele and S258L on the other. The detrimental effect of these mutations on ALG1 protein function was demonstrated in a complementation assay using alg1 Saccharomyces cerevisiae yeast mutants. The ALG1 mannosyltransferase defect described here represents a novel type of CDG, which should be referred to as CDG-I

    La organización de la información, los lenguajes documentales y la normalización

    Get PDF
    La calidad de la información que se maneja actualmente ha aumentado debido a las nuevas tecnologías. Esta comunicación se plantea la calidad de la información que los bibliotecarios ofrecen a sus usuarios a través de diversas herramientas : control de autoridades, normalización, normas bibliográficas, lenguajes documentales y encabezamientos de materia

    Carbohydrate receptor-mediated gene transfer to human T leukaemic cells

    Get PDF
    The mucin-type carbohydrate Tn cryptantigen (GalNAcα1-O-Ser/Thr, where GalNAc is N-acetyl-D-galactosamine) is expressed in many carcinomas, in haemopoietic disorders including the Tn syndrome, and on human immunodeficiency virus (HIV) coat glycoproteins, but is not expressed on normal, differentiated cells because of the expression of a Tn-processing galactosyltransferase. Using Jurkat T leukaemic cells which express high levels of Tn antigen due to deficient Tn galactosylation, we have established the Tn antigen-mediated gene transfer and demonstrate the considerable efficiency of this approach. We used poly(L-lysine) conjugates of the monoclonal antibody 1E3 directed against the Tn antigen to deliver the luciferase and β-galactosidase reporter genes to Jurkat cells by receptor-mediated endocytosis. Addition of unconjugated 1E3 reduced transfection efficiency in a concentration-dependent manner and incubation with free GalNAc abolished DNA transfer completely, indicating that gene delivery is indeed mediated by the Tn antigen. Pre-treatment of Jurkat cells with Vibrio cholerae sialidase, which uncovers additional Tn antigens, resulted in an improvement of gene transfection. Both human and chicken adenovirus particles attached to the DNA/polylysine complex strongly augmented transgene expression. When the β-galactosidase (lacZ) gene was delivered to Jurkat cells by Tn-mediated endocytosis, up to 60% of the cells were positive in the cytochemical stain using 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) as a chromogenic substrate. The efficiency of the transferrin receptor-mediated DNA uptake into Jurkat cells was comparatively low, although these cells were shown to express considerable amounts of transferrin receptor. We show here that a mucin-type carbohydrate antigen mediates highly efficient DNA uptake by endocytosis into Jurkat T cells. This method represents a 50-fold improvement of Jurkat cell transfection efficiency over other physical gene transfer techniques. Specific gene delivery to primary cancer cells exhibiting Tn epitopes may especially be desirable in immunotherapy protocol
    corecore