385 research outputs found

    Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming

    Get PDF
    Aging; Epigenetic clocks; PluripotencyEnvelliment; Rellotges epigenètics; PluripotènciaEnvejecimiento; Relojes epigenéticos; PluripotenciaThe expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum

    Synovial fluid but not plasma interleukin-8 is associated with clinical severity and inflammatory markers in knee osteoarthritis women with joint effusion

    Get PDF
    Altres ajuts: 2017 Grant of Sociedad Española de Reumatología (SER)Several cytokines and adipokines are related to clinical severity and progression in knee osteoarthritis. The aim of this study was to evaluate the associations of IL-8 with clinical severity and with local and systemic adipokines and cytokines. This is a Cross-sectional study including 115 women with symptomatic primary knee osteoarthritis with ultrasound-confirmed joint effusion. Age, symptoms duration and body mass index were collected. Radiographic severity was evaluated according to Kellgren-Lawrence. Pain and disability were assessed by Lequesne and Knee injury and Osteoarthritis Outcome Score pain, symptoms and function scales. Three inflammatory markers and five adipokines were measured by ELISA in serum and synovial fluid. Partial correlation coefficient (PCC) and corresponding 95% confidence interval were used to evaluate association. Synovial fluid IL-8 was significantly associated with clinical severity scales. After controlling for potential confounders, associations measured by a Partial Correlation Coefficient (PCC) remained essentially unaltered for Lequesne (PCC = 0.237), KOOS pain (PCC = − 0.201) and KOOS symptoms (PCC = − 0.209), KOOS function (PCC = − 0.185), although the later did not reach statistical significance. Also in synovial fluid samples, associations were found between IL-8 and TNF (PCC = 0.334), IL6 (PCC = 0.461), osteopontin (PCC = 0.575), visfatin (PCC = 0.194) and resistin (PCC = 0.182), although significance was not achieved for the later after statistical control for confounders. None of these associations were detected in serum. In conclusion, IL-8 was associated with clinical severity, inflammatory markers and adipokines in synovial fluid, but not in blood. Although the reported associations are weak to moderate in magnitude, these findings reinforce the notion that local and not systemic inflammation is more relevant to clinical severity in knee OA women with joint effusion

    Discovery and functional assessment of gene variants in the vascular endothelial growth factor pathway

    Full text link
    Angiogenesis is a host-mediated mechanism in disease pathophysiology. The vascular endothelial growth factor (VEGF) pathway is a major determinant of angiogenesis, and a comprehensive annotation of the functional variation in this pathway is essential to understand the genetic basis of angiogenesis-related diseases. We assessed the allelic heterogeneity of gene expression, population specificity of cis expression quantitative trait loci (eQTLs), and eQTL function in luciferase assays in CEU and Yoruba people of Ibadan, Nigeria (YRI) HapMap lymphoblastoid cell lines in 23 resequenced genes. Among 356 cis-eQTLs, 155 and 174 were unique to CEU and YRI, respectively, and 27 were shared between CEU and YRI. Two cis-eQTLs provided mechanistic evidence for two genome-wide association study findings. Five eQTLs were tested for function in luciferase assays and the effect of two KRAS variants was concordant with the eQTL effect. Two eQTLs found in each of PRKCE, PIK3C2A, and MAP2K6 could predict 44%, 37%, and 45% of the variance in gene expression, respectively. This is the first analysis focusing on the pattern of functional genetic variation of the VEGF pathway genes in CEU and YRI populations and providing mechanistic evidence for genetic association studies of diseases for which angiogenesis plays a pathophysiologic role. (C) 2013 Wiley Periodicals, Inc

    Envelope tracking amplification with reduced slew-rate and bandwidth envelopes

    Get PDF
    This paper presents an Envelope Tracking Power Amplifier whose architecture includes a Hybrid Envelope Amplifier (HEA) and an algorithm to adapt the envelope´s characteristics to the HEA´s limitations. The HEA attempts to combine the high efficiency of a switched amplifier with the wide band capabilities of a linear amplifier. A modified Slew Rate (SR) reduction algorithm cope with the bandwidth and SR limitations of the HEA. On the other hand, the non-linearities introduced by this Envelope Amplifier (EA) and by the dynamic supply are compensated using Digital Pre-Distortion. Results show that these non-linearities are compensable and that the architecture offers higher efficiency figures compared to the conventional linear EA

    Cd4 and cd8 lymphocyte counts as surrogate early markers for progression in sars-cov-2 pneumonia : A prospective study

    Get PDF
    Background: COVID-19 pathophysiology and the predictive factors involved are not fully understood, but lymphocytes dysregulation appears to play a role. This paper aims to evaluate lymphocyte subsets in the pathophysiology of COVID-19 and as predictive factors for severe disease. Patient and methods: A prospective cohort study of patients with SARS-CoV-2 bilateral pneumonia recruited at hospital admission. Demographics, medical history, and data regarding SARS-CoV-2 infection were recorded. Patients systematically underwent complete laboratory tests, including parameters related to COVID-19 as well as lymphocyte subsets study at the time of admission. Severe disease criteria were established at admission, and patients were classified on remote follow-up according to disease evolution. Linear regression models were used to assess associations with disease evolution, and Receiver Operating Characteristic (ROC) and the corresponding Area Under the Curve (AUC) were used to evaluate predictive values. Results: Patients with critical COVID-19 showed a decrease in CD3+CD4+ T cells count compared to non-critical (278 (485 IQR) vs. 545 (322 IQR)), a decrease in median CD4+/CD8+ ratio (1.7, (1.7 IQR) vs. 3.1 (2.4 IQR)), and a decrease in median CD4+MFI (21,820 (4491 IQR) vs. 26,259 (3256 IQR)), which persisted after adjustment. CD3+CD8+ T cells count had a high correlation with time to hospital discharge (PC = −0.700 (−0.931, −0.066)). ROC curves for predictive value showed lymphocyte subsets achieving the best performances, specifically CD3+CD4+ T cells (AUC = 0.756), CD4+/CD8+ ratio (AUC = 0.767), and CD4+MFI (AUC = 0.848). Conclusions: A predictive value and treatment considerations for lymphocyte subsets are suggested, especially for CD3CD4+ T cells. Lymphocyte subsets determination at hospital admission is recommended

    Large differences in global transcriptional regulatory programs of normal and tumor colon cells

    Get PDF
    Background: Dysregulation of transcriptional programs leads to cell malfunctioning and can have an impact in cancer development. Our study aims to characterize global differences between transcriptional regulatory programs of normal and tumor cells of the colon. Methods: Affymetrix Human Genome U219 expression arrays were used to assess gene expression in 100 samples of colon tumor and their paired adjacent normal mucosa. Transcriptional networks were reconstructed using ARACNe algorithm using 1,000 bootstrap replicates consolidated into a consensus network. Networks were compared regarding topology parameters and identified well-connected clusters. Functional enrichment was performed with SIGORA method. ENCODE ChIP-Seq data curated in the hmChIP database was used for in silico validation of the most prominent transcription factors. Results: The normal network contained 1,177 transcription factors, 5,466 target genes and 61,226 transcriptional interactions. A large loss of transcriptional interactions in the tumor network was observed (11,585; 81% reduction), which also contained fewer transcription factors (621; 47% reduction) and target genes (2,190; 60% reduction) than the normal network. Gene silencing was not a main determinant of this loss of regulatory activity, since the average gene expression was essentially conserved. Also, 91 transcription factors increased their connectivity in the tumor network. These genes revealed a tumor-specific emergent transcriptional regulatory program with significant functional enrichment related to colorectal cancer pathway. In addition, the analysis of clusters again identified subnetworks in the tumors enriched for cancer related pathways (immune response, Wnt signaling, DNA replication, cell adherence, apoptosis, DNA repair, among others). Also multiple metabolism pathways show differential clustering between the tumor and normal network. Conclusions: These findings will allow a better understanding of the transcriptional regulatory programs altered in colon cancer and could be an invaluable methodology to identify potential hubs with a relevant role in the field of cancer diagnosis, prognosis and therapy

    Differences between CAFs and their paired NCF from adjacent colonic mucosa reveal functional heterogeneity of CAFs, providing prognostic information

    Get PDF
    Little is known about the difference in gene expression between carcinoma-associated fibroblasts (CAFs) and paired normal colonic fibroblasts (NCFs) in colorectal cancer. Paired CAFs and NCFs were isolated from eight primary human colorectal carcinoma specimens. In culture conditions, soluble factors secreted by CAFs in the conditioned media increased clonogenicity and migration of epithelial cancer cells lines to a greater extent than did NCF. In vivo, CAFs were more competent as tumour growth enhancers than paired NCFs when co-inoculated with colorectal cell lines. Gene expression analysis of microarrays of CAF and paired NCF populations enabled us to identify 108 deregulated genes (38 upregulated and 70 downregulated genes). Most of those genes are fibroblast-specific. This has been validated in silico in dataset GSE39396 and by qPCR in selected genes. GSEA analysis revealed a differential transcriptomic profile of CAFs, mainly involving the Wnt signallingsignalling pathway, focal adhesion and cell cycle. Both deregulated genes and biological processes involved depicted a considerable degree of overlap with deregulated genes reported in breast, lung, oesophagus and prostate CAFs. These observations suggest that similar transcriptomic programs may be active in the transition from normal fibroblast in adjacent tissues to CAFs, independently of their anatomic demarcation. Additionally NCF already depicted an activated pattern associated with inflammation. The deregulated genes signature score seemed to correlate with CAF tumour promoter abilities in vitro, suggesting a high degree of heterogeneity between CAFs, and it has also prognostic value in two independent datasets. Further characterization of the roles these biomarkers play in cancer will reveal how CAFs provide cancer cells with a suitable microenvironment and may help in the development of new therapeutic targets for cancer treatment

    A 5-gene classifier from the carcinoma-associated fibroblast transcriptomic profile and clinical outcome in colorectal cancer

    Get PDF
    Based on 108 differentially expressed genes between carcinoma-associated fibroblasts (CAFs) and paired normal colonic fibroblasts we recently reported, a 5-gene classifier for relapse prediction in Stage II/III colorectal cancer (CRC ) was developed. Its predictive value was validated in datasets GSE17538, GSE33113 and GSE14095. An additional validation was performed in a metacohort (n=317) and 142 CRC patients by means of RT-PCR. The 5-gene classifier was significantly associated with increased relapse risk and death from CRC across all validation series of Stage II/III patients used. Multivariate Cox regression analyses confirmed the independent prognostic value of the stromal classifier (HR=2.67; P=0.002). Post-test probabilities provided evidence of the suitability of the 5-gene classifier in clinical practice, identifying a subgroup of Stage-II patients who were at high risk of relapse. Moreover, the a priory worst prognosis mesenchymal subtype of tumours can be stratified according to the physiological status of their carcinoma-associated fibroblasts. In conclusion the CAFs-derived 5-gene classifier provides more accurate information about outcome than conventional clinicopathological criteria and it could be useful to take clinical decisions, especially in Stage II. Additionally, the classifier put into relevance the CAF's intratumoral heterogeneity and might contribute to find relevant targets for depleting adequate CAFS subtypes

    High Performance of a Dominant/X-Linked Gene Panel in Patients with Neurodevelopmental Disorders

    Get PDF
    Neurodevelopmental disorders (NDDs) affect 2-5% of the population and approximately 50% of cases are due to genetic factors. Since de novo pathogenic variants account for the majority of cases, a gene panel including 460 dominant and X-linked genes was designed and applied to 398 patients affected by intellectual disability (ID)/global developmental delay (GDD) and/or autism (ASD). Pathogenic variants were identified in 83 different genes showing the high genetic heterogeneity of NDDs. A molecular diagnosis was established in 28.6% of patients after high-depth sequencing and stringent variant filtering. Compared to other available gene panel solutions for NDD molecular diagnosis, our panel has a higher diagnostic yield for both ID/GDD and ASD. As reported previously, a significantly higher diagnostic yield was observed: (i) in patients affected by ID/GDD compared to those affected only by ASD, and (ii) in females despite the higher proportion of males among our patients. No differences in diagnostic rates were found between patients affected by different levels of ID severity. Interestingly, patients harboring pathogenic variants presented different phenotypic features, suggesting that deep phenotypic profiling may help in predicting the presence of a pathogenic variant. Despite the high performance of our panel, whole exome-sequencing (WES) approaches may represent a more robust solution. For this reason, we propose the list of genes included in our customized gene panel and the variant filtering procedure presented here as a first-tier approach for the molecular diagnosis of NDDs in WES studies

    Antibody Response Induced by BNT162b2 and mRNA-1273 Vaccines against the SARS-CoV-2 in a Cohort of Healthcare Workers

    Get PDF
    The aim of this study was to characterize the antibody response induced by SARS-CoV-2 mRNA vaccines in a cohort of healthcare workers. A total of 2247 serum samples were analyzed using the Elecsys(®) Anti-SARS-CoV-2 S-test (Roche Diagnostics International Ltd., Rotkreuz, Switzerland). Sex, age, body mass index (BMI), arterial hypertension, smoking and time between infection and/or vaccination and serology were considered the confounding factors. Regarding the medians, subjects previously infected with SARS-CoV-2 who preserved their response to the nucleocapsid (N) protein showed higher humoral immunogenicity (BNT162b2: 6456.0 U/mL median; mRNA-1273: 2505.0 U/mL) compared with non-infected (BNT162b2: 867.0 U/mL; mRNA-1273: 2300.5 U/mL) and infected subjects with a lost response to N protein (BNT162b2: 2992.0 U/mL). After controlling for the confounders, a higher response was still observed for mRNA-1273 compared with BNT162b2 in uninfected individuals (FC = 2.35, p < 0.0001) but not in previously infected subjects (1.11 FC, p = 0.1862). The lowest levels of antibodies were detected in previously infected non-vaccinated individuals (39.4 U/mL). Clinical variables previously linked to poor prognoses regarding SARS-CoV-2 infection, such as age, BMI and arterial hypertension, were positively associated with increasing levels of anti-S protein antibody exclusively in infected subjects. The mRNA-1273 vaccine generated a higher antibody response to the S protein than BNT162b2 in non-infected subjects only
    corecore