360 research outputs found

    Cell Cycle

    Get PDF

    Brain age predicts disability accumulation in multiple sclerosis

    Get PDF
    OBJECTIVE: Neurodegenerative conditions often manifest radiologically with the appearance of premature aging. Multiple sclerosis (MS) biomarkers related to lesion burden are well developed, but measures of neurodegeneration are less well-developed. The appearance of premature aging quantified by machine learning applied to structural MRI assesses neurodegenerative pathology. We assess the explanatory and predictive power of brain age analysis on disability in MS using a large, real-world dataset. METHODS: Brain age analysis is predicated on the over-estimation of predicted brain age in patients with more advanced pathology. We compared the performance of three brain age algorithms in a large, longitudinal dataset (\u3e13,000 imaging sessions from \u3e6,000 individual MS patients). Effects of MS, MS disease course, disability, lesion burden, and DMT efficacy were assessed using linear mixed effects models. RESULTS: MS was associated with advanced predicted brain age cross-sectionally and accelerated brain aging longitudinally in all techniques. While MS disease course (relapsing vs. progressive) did contribute to advanced brain age, disability was the primary correlate of advanced brain age. We found that advanced brain age at study enrollment predicted more disability accumulation longitudinally. Lastly, a more youthful appearing brain (predicted brain age less than actual age) was associated with decreased disability. INTERPRETATION: Brain age is a technically tractable and clinically relevant biomarker of disease pathology that correlates with and predicts increasing disability in MS. Advanced brain age predicts future disability accumulation

    Quantitative signal properties from standardized MRIs correlate with multiple sclerosis disability

    Get PDF
    OBJECTIVE: To enable use of clinical magnetic resonance images (MRIs) to quantify abnormalities in normal appearing (NA) white matter (WM) and gray matter (GM) in multiple sclerosis (MS) and to determine associations with MS-related disability. Identification of these abnormalities heretofore has required specialized scans not routinely available in clinical practice. METHODS: We developed an analytic technique which normalizes image intensities based on an intensity atlas for quantification of WM and GM abnormalities in standardized MRIs obtained with clinical sequences. Gaussian mixture modeling is applied to summarize image intensity distributions from T1-weighted and 3D-FLAIR (T2-weighted) images from 5010 participants enrolled in a multinational database of MS patients which collected imaging, neuroperformance and disability measures. RESULTS: Intensity distribution metrics distinguished MS patients from control participants based on normalized non-lesional signal differences. This analysis revealed non-lesional differences between relapsing MS versus progressive MS subtypes. Further, the correlation between our non-lesional measures and disability was approximately three times greater than that between total lesion volume and disability, measured using the patient derived disease steps. Multivariate modeling revealed that measures of extra-lesional tissue integrity and atrophy contribute uniquely, and approximately equally, to the prediction of MS-related disability. INTERPRETATION: These results support the notion that non-lesional abnormalities correlate more strongly with MS-related disability than lesion burden and provide new insight into the basis of abnormalities in NA WM. Non-lesional abnormalities distinguish relapsing from progressive MS but do not distinguish between progressive subtypes suggesting a common progressive pathophysiology. Image intensity parameters and existing biomarkers each independently correlate with MS-related disability

    Tau accumulation in autosomal dominant Alzheimer’s disease: a longitudinal [18F]flortaucipir study

    Get PDF
    Cortical tau accumulation is a key pathological event that partly defines Alzheimer’s disease (AD) onset and is associated with cognitive decline and future disease progression. However, an improved understanding of the timing and pattern of early tau deposition in AD and how this may be tracked in vivo is needed. Data from 59 participants involved in two longitudinal cohort studies of autosomal dominant AD (ADAD) were used to investigate whether tau PET can detect and track presymptomatic change; seven participants were symptomatic, and 52 were asymptomatic but at a 50% risk of carrying a pathogenic mutation. All had baseline flortaucipir (FTP) PET, MRI and clinical assessments; 26 individuals had more than one FTP PET scan. Standardised uptake value ratios (SUVRs) in prespecified regions of interest (ROIs) were obtained using inferior cerebellar grey matter as the reference region. We compared the changes in FTP SUVRs between presymptomatic carriers, symptomatic carriers and non-carriers, adjusting for age, sex and study site. We also investigated the relationship between regional FTP SUVRs and estimated years to/from symptom onset (EYO). Compared to both non-carriers and presymptomatic carriers, FTP SUVRs were significantly higher in symptomatic carriers in all ROIs tested (p 0.05), although increased FTP signal uptake was seen posteriorly in some individuals around the time of expected symptom onset. When we examined the relationship of FTP SUVR with respect to EYO, the earliest significant regional difference between mutation carriers and non-carriers was detected within the precuneus prior to estimated symptom onset in some cases. This study supports preliminary studies suggesting that presymptomatic tau tracer uptake is rare in ADAD. In cases where early uptake was seen, there was often a predilection for posterior regions (the precuneus and post-cingulate) as opposed to the medial temporal lobe, highlighting the importance of examining in vivo tau uptake beyond the confines of traditional Braak staging

    Decreased body mass index in the preclinical stage of autosomal dominant Alzheimer’s disease

    Get PDF
    The relationship between body-mass index (BMI) and AlzheimerÂŽs disease (AD) has been extensively investigated. However, BMI alterations in preclinical individuals with autosomal dominant AD (ADAD) have not yet been investigated. We analyzed cross-sectional data from 230 asymptomatic members of families with ADAD participating in the Dominantly Inherited Alzheimer Network (DIAN) study including 120 preclinical mutation carriers (MCs) and 110 asymptomatic non-carriers (NCs). Differences in BMI and their relation with cerebral amyloid load and episodic memory as a function of estimated years to symptom onset (EYO) were analyzed. Preclinical MCs showed significantly lower BMIs compared to NCs, starting 11.2 years before expected symptom onset. However, the BMI curves begun to diverge already at 17.8 years before expected symptom onset. Lower BMI in preclinical MCs was significantly associated with less years before estimated symptom onset, higher global AÎČ brain burden, and with lower delayed total recall scores in the logical memory test. The study provides cross-sectional evidence that weight loss starts one to two decades before expected symptom onset of ADAD. Our findings point toward a link between the pathophysiology of ADAD and disturbance of weight control mechanisms. Longitudinal follow-up studies are warranted to investigate BMI changes over time

    Amyloid and Tau Pathology Associations With Personality Traits, Neuropsychiatric Symptoms, and Cognitive Lifestyle in the Preclinical Phases of Sporadic and Autosomal Dominant Alzheimer's Disease

    Get PDF
    Background: Major prevention trials for Alzheimer’s disease (AD) are now focusing on multidomain lifestyle interventions. However, the exact combination of behavioral factors related to AD pathology remains unclear. In 2 cohorts of cognitively unimpaired individuals at risk of AD, we examined which combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle (years of education or lifetime cognitive activity) related to the pathological hallmarks of AD, amyloid-ÎČ, and tau deposits. Methods: A total of 115 older adults with a parental or multiple-sibling family history of sporadic AD (PREVENT-AD [PRe-symptomatic EValuation of Experimental or Novel Treatments for AD] cohort) underwent amyloid and tau positron emission tomography and answered several questionnaires related to behavioral attributes. Separately, we studied 117 mutation carriers from the DIAN (Dominant Inherited Alzheimer Network) study group cohort with amyloid positron emission tomography and behavioral data. Using partial least squares analysis, we identified latent variables relating amyloid or tau pathology with combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle. Results: In PREVENT-AD, lower neuroticism, neuropsychiatric burden, and higher education were associated with less amyloid deposition (p = .014). Lower neuroticism and neuropsychiatric features, along with higher measures of openness and extraversion, were related to less tau deposition (p = .006). In DIAN, lower neuropsychiatric burden and higher education were also associated with less amyloid (p = .005). The combination of these factors accounted for up to 14% of AD pathology. Conclusions: In the preclinical phase of both sporadic and autosomal dominant AD, multiple behavioral features were associated with AD pathology. These results may suggest potential pathways by which multidomain interventions might help delay AD onset or progression

    Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease‐informed machine‐learning

    Get PDF
    Introduction Developing cross‐validated multi‐biomarker models for the prediction of the rate of cognitive decline in Alzheimer's disease (AD) is a critical yet unmet clinical challenge. Methods We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid‐PET and fluorodeoxyglucose positron‐emission tomography (FDG‐PET) to predict rates of cognitive decline. Prediction models were trained in autosomal‐dominant Alzheimer's disease (ADAD, n = 121) and subsequently cross‐validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model‐based risk enrichment was estimated. Results A model combining all biomarker modalities and established in ADAD predicted the 4‐year rate of decline in global cognition (R2 = 24%) and memory (R2 = 25%) in sporadic AD. Model‐based risk‐enrichment reduced the sample size required for detecting simulated intervention effects by 50%–75%. Discussion Our independently validated machine‐learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD

    Temporal Artery versus Bladder Thermometry during Adult Medical-Surgical Intensive Care Monitoring: An Observational Study

    Get PDF
    Abstract Background We sought to evaluate agreement between a new and widely implemented method of temperature measurement in critical care, temporal artery thermometry and an established method of core temperature measurement, bladder thermometry as performed in clinical practice. Methods Temperatures were simultaneously recorded hourly (n = 736 observations) using both devices as part of routine clinical monitoring in 14 critically ill adult patients with temperatures ranging ≄1°C prior to consent. Results The mean difference between temporal artery and bladder temperatures measured was -0.44°C (95% confidence interval, -0.47°C to -0.41°C), with temporal artery readings lower than bladder temperatures. Agreement between the two devices was greatest for normothermia (36.0°C to < 38.3°C) (mean difference -0.35°C [95% confidence interval, -0.37°C to -0.33°C]). The temporal artery thermometer recorded higher temperatures during hypothermia (< 36°C) (mean difference 0.66°C [95% confidence interval, 0.53°C to 0.79°C]) and lower temperatures during hyperthermia (≄38.3°C) (mean difference -0.90°C [95% confidence interval, -0.99°C to -0.81°C]). The sensitivity for detecting fever (core temperature ≄38.3°C) using the temporal artery thermometer was 0.26 (95% confidence interval, 0.20 to 0.33), and the specificity was 0.99 (95% confidence interval, 0.98 to 0.99). The positive likelihood ratio for fever was 24.6 (95% confidence interval, 10.7 to 56.8); the negative likelihood ratio was 0.75 (95% confidence interval, 0.68 to 0.82). Conclusions Temporal artery thermometry produces somewhat surprising disagreement with an established method of core temperature measurement and should not to be used in situations where body temperature needs to be measured with accuracy

    Evaluation of dose-dependent treatment effects after mid-trial dose escalation in biomarker, clinical, and cognitive outcomes for gantenerumab or solanezumab in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: While the Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) was ongoing, external data suggested higher doses were needed to achieve targeted effects; therefore, doses of gantenerumab were increased 5-fold, and solanezumab was increased 4-fold. We evaluated to what extent mid-trial dose increases produced a dose-dependent treatment effect. Methods: Using generalized linear mixed effects (LME) models, we estimated the annual low- and high-dose treatment effects in clinical, cognitive, and biomarker outcomes. Results: Both gantenerumab and solanezumab demonstrated dose-dependent treatment effects (significant for gantenerumab, non-significant for solanezumab) in their respective target amyloid biomarkers (Pittsburgh compound B positron emission tomography standardized uptake value ratio and cerebrospinal fluid amyloid beta 42), with gantenerumab demonstrating additional treatment effects in some downstream biomarkers. No dose-dependent treatment effects were observed in clinical or cognitive outcomes. Conclusions: Mid-trial dose escalation can be implemented as a remedy for an insufficient initial dose and can be more cost effective and less burdensome to participants than starting a new trial with higher doses, especially in rare diseases. Highlights: We evaluated the dose-dependent treatment effect of two different amyloid-specific immunotherapies. Dose-dependent treatment effects were observed in some biomarkers. No dose-dependent treatment effects were observed in clinical/cognitive outcomes, potentially due to the fact that the modified study may not have been powered to detect such treatment effects in symptomatic subjects at a mild stage of disease exposed to high (or maximal) doses of medication for prolonged durations
    • 

    corecore