12 research outputs found

    Use of space-resolved in-situ high energy X-ray diffraction for the characterization of the compositional dependence of the austenite-to-ferrite transformation kinetics in steels

    Get PDF
    In-situ high energy X-Ray diffraction (HEXRD) was used on compositionally graded steels to study the effect of substitutional elements on ferrite growth kinetics in Fe-C-X and Fe-C-X-Y systems. Two systems have been selected to illustrate the applicability of the combinatorial approach in studying such transformations, Fe-C-Mn and Fe-C-Mn-Mo. Comparison between the measured ferrite growth kinetics using HEXRD and the predicted ones using Para-Equilibrium (PE) and Local Equilibrium with Negligible Partitioning (LENP) models indicates that the fractions reached at the stasis of transformation are lower than the predicted ones. Experiments indicated a deviation of measured kinetics from both PE and LENP models when increasing Mn and decreasing Mo (in Fe-C-Mn-Mo system). The large amount of data that can be obtained using this approach can be used for validating existing models describing ferrite growth kinetics

    Suivi de la cinétique associée à la phase gamma' dans le superalliage N18 en utilisant des mesures de résisitivité électrique in situ

    Get PDF
    International audienceIn nickel-based superalloys, temperatures related to the formation or the dissolution of the different types of γ' precipitates are important parameters for optimizing the mechanical properties of components but also for developing models which can reproduce the kinetics of their phase transformation. We showed that the electrical resistivity variations during heat treatment of the N18 superalloy was sufficient to monitor the kinetics related to secondary and tertiary γ' precipitates. In particular, the effects of the heating rate and the initial microstructure on the dissolution kinetics of the γ' phase were investigated. Experimental results were also compared to outputs of a precipitation model developed for the N18 alloy showing that in situ electrical resistivity measurements can be used for calibration and validation purposes

    Développement d’alliages métalliques à gradient de composition pour l’exploration combinatoire des microstructures

    No full text
    The transformation of austenite into ferrite in steels is of considerable interest in controlling the final properties of steels, in particular Advanced High-Strength Steels (AHSS) such as Dual Phase (DP) steel. Despite tremendous efforts in understanding the mechanisms controlling ferrite formation, the role of substitutional elements during ferrite growth and their interaction with the migrating α/γ interface remain unclear. Several models have been developed to describe ferrite growth kinetics in ternary and higher systems. The solute drag based models have been successfully used to predict kinetics for multiple substitutional solutes, compositions and temperatures in ternary systems. However, the extension of this model to higher order systems highlighted a complex behavior of the interaction between the different interstitial and substitutional elements at the interface. Validation of the developed models requires an experimental study of the effect of both composition and temperature on growth kinetics. The aim of this contribution is to present a complete combinatorial high-throughput methodology to accelerate the investigation of the dependency of ferrite growth kinetics on substitutional composition in alloy steels. It is noteworthy, however, that this new methodology could be used to study any other phase transformation in any other metallic alloy. The essence of the methodology is to fabricate materials with macroscopic composition gradients, and to perform time- and space-resolved in situ high-energy X-ray diffraction experiments to gather the austenite-to-ferrite phase transformation kinetics in many points of the compositional space. Diffusion couples containing millimeter-scale solute gradients and an almost constant carbon content were generated using the present methodology and used to study ferrite growth kinetics at inter-critical temperatures using in-situ high-energy X-ray diffraction experiments. During 4 days of experiments, more than 1500 kinetics were gathered for different compositions and at different temperatures. This dataset of unprecedented size was used validate a modified version of the three-jump solute drag model for both ternary and quaternary systems. The model calculations matched experimental transformation kinetics at all investigated temperatures and over almost all the investigated composition ranges of Si, Cr, Mn, Ni, and Mo, contrary to results from para-equilibrium (PE) and local equilibrium negligible partitioning (LENP) models. Additionally, it was demonstrated that the calibration of thermodynamic parameters in ternary systems held true in quaternary systems, paving the way towards modeling of the transformation in higher-order systems.La transformation de l'austénite en ferrite dans les aciers présente un intérêt considérable pour le contrôle des propriétés finales des aciers, en particulier des aciers à haute résistance (AHSS) tels que l'acier dual phase (DP). Malgré les efforts considérables déployés pour comprendre les mécanismes qui contrôlent la cinétique de formation de la ferrite, le rôle des éléments substitutionnels pendant la croissance de la ferrite et leur interaction avec l'interface de migration α/γ restent peu clair. Plusieurs modèles ont été développés pour décrire la cinétique de croissance de la ferrite dans les systèmes ternaires et les systèmes d’ordre supérieur. Les modèles ‘solute drag’ ont été utilisés avec succès pour prédire la cinétique de transformation pour plusieurs solutés et à de nombreuses compositions et températures dans les systèmes ternaires. Cependant, l'extension de ce modèle aux systèmes d'ordre supérieur a mis en évidence un comportement complexe de l'interaction entre les différents éléments interstitiels et substitutionnels à l'interface. La validation des modèles développés nécessite une étude expérimentale de l'effet de la composition et de la température sur la cinétique de croissance. L'objectif de cette contribution est de présenter une méthodologie combinatoire à haut débit complète pour accélérer l'étude l’effet de la concentration des solutés sur la transformation austénite-ferrite. Il convient toutefois de noter que cette nouvelle méthodologie pourrait être utilisée pour étudier toute autre transformation de phase dans tout autre alliage métallique. L'essence de la méthodologie est de fabriquer des matériaux avec des gradients de composition macroscopiques, et d'effectuer des expériences in situ de diffraction des rayons X à haute énergie, résolues dans le temps et dans l'espace, pour enregistrer la cinétique de transformation de phases austénite-ferrite en de nombreux points de l'espace de composition. Des couples de diffusion contenant des gradients de soluté à l'échelle millimétrique et une teneur en carbone presque constante ont été générés en utilisant la présente méthodologie et utilisés pour étudier la cinétique de croissance de la ferrite à des températures intercritiques en utilisant des expériences in situ de diffraction des rayons X à haute énergie. Pendant 4 jours d'expériences, plus de 1500 cinétiques ont été mesurées pour différentes compositions et à différentes températures. Cet ensemble de données d'une taille sans précédent a été utilisé pour valider une version modifiée du modèle ‘three-jump solute drag’ pour les systèmes ternaires et quaternaires. Les calculs du modèle correspondent parfaitement à la cinétique de transformation expérimentale à toutes les températures étudiées et sur presque toutes les plages de composition étudiées de Si, Cr, Mn, Ni et Mo, contrairement aux résultats des modèles de para-équilibre (PE) et de partitionnement négligeable à l'équilibre local (LENP). En outre, il a été démontré que l'étalonnage des paramètres thermodynamiques dans les systèmes ternaires reste valable dans les systèmes quaternaires, ouvrant la voie à la modélisation de la transformation dans les systèmes d'ordre supérieur

    Development of compositional-gradient metallic alloys for combinatorial investigation of microstructures

    No full text
    La transformation de l'austénite en ferrite dans les aciers présente un intérêt considérable pour le contrôle des propriétés finales des aciers, en particulier des aciers à haute résistance (AHSS) tels que l'acier dual phase (DP). Malgré les efforts considérables déployés pour comprendre les mécanismes qui contrôlent la cinétique de formation de la ferrite, le rôle des éléments substitutionnels pendant la croissance de la ferrite et leur interaction avec l'interface de migration α/γ restent peu clair. Plusieurs modèles ont été développés pour décrire la cinétique de croissance de la ferrite dans les systèmes ternaires et les systèmes d’ordre supérieur. Les modèles ‘solute drag’ ont été utilisés avec succès pour prédire la cinétique de transformation pour plusieurs solutés et à de nombreuses compositions et températures dans les systèmes ternaires. Cependant, l'extension de ce modèle aux systèmes d'ordre supérieur a mis en évidence un comportement complexe de l'interaction entre les différents éléments interstitiels et substitutionnels à l'interface. La validation des modèles développés nécessite une étude expérimentale de l'effet de la composition et de la température sur la cinétique de croissance. L'objectif de cette contribution est de présenter une méthodologie combinatoire à haut débit complète pour accélérer l'étude l’effet de la concentration des solutés sur la transformation austénite-ferrite. Il convient toutefois de noter que cette nouvelle méthodologie pourrait être utilisée pour étudier toute autre transformation de phase dans tout autre alliage métallique. L'essence de la méthodologie est de fabriquer des matériaux avec des gradients de composition macroscopiques, et d'effectuer des expériences in situ de diffraction des rayons X à haute énergie, résolues dans le temps et dans l'espace, pour enregistrer la cinétique de transformation de phases austénite-ferrite en de nombreux points de l'espace de composition. Des couples de diffusion contenant des gradients de soluté à l'échelle millimétrique et une teneur en carbone presque constante ont été générés en utilisant la présente méthodologie et utilisés pour étudier la cinétique de croissance de la ferrite à des températures intercritiques en utilisant des expériences in situ de diffraction des rayons X à haute énergie. Pendant 4 jours d'expériences, plus de 1500 cinétiques ont été mesurées pour différentes compositions et à différentes températures. Cet ensemble de données d'une taille sans précédent a été utilisé pour valider une version modifiée du modèle ‘three-jump solute drag’ pour les systèmes ternaires et quaternaires. Les calculs du modèle correspondent parfaitement à la cinétique de transformation expérimentale à toutes les températures étudiées et sur presque toutes les plages de composition étudiées de Si, Cr, Mn, Ni et Mo, contrairement aux résultats des modèles de para-équilibre (PE) et de partitionnement négligeable à l'équilibre local (LENP). En outre, il a été démontré que l'étalonnage des paramètres thermodynamiques dans les systèmes ternaires reste valable dans les systèmes quaternaires, ouvrant la voie à la modélisation de la transformation dans les systèmes d'ordre supérieur.The transformation of austenite into ferrite in steels is of considerable interest in controlling the final properties of steels, in particular Advanced High-Strength Steels (AHSS) such as Dual Phase (DP) steel. Despite tremendous efforts in understanding the mechanisms controlling ferrite formation, the role of substitutional elements during ferrite growth and their interaction with the migrating α/γ interface remain unclear. Several models have been developed to describe ferrite growth kinetics in ternary and higher systems. The solute drag based models have been successfully used to predict kinetics for multiple substitutional solutes, compositions and temperatures in ternary systems. However, the extension of this model to higher order systems highlighted a complex behavior of the interaction between the different interstitial and substitutional elements at the interface. Validation of the developed models requires an experimental study of the effect of both composition and temperature on growth kinetics. The aim of this contribution is to present a complete combinatorial high-throughput methodology to accelerate the investigation of the dependency of ferrite growth kinetics on substitutional composition in alloy steels. It is noteworthy, however, that this new methodology could be used to study any other phase transformation in any other metallic alloy. The essence of the methodology is to fabricate materials with macroscopic composition gradients, and to perform time- and space-resolved in situ high-energy X-ray diffraction experiments to gather the austenite-to-ferrite phase transformation kinetics in many points of the compositional space. Diffusion couples containing millimeter-scale solute gradients and an almost constant carbon content were generated using the present methodology and used to study ferrite growth kinetics at inter-critical temperatures using in-situ high-energy X-ray diffraction experiments. During 4 days of experiments, more than 1500 kinetics were gathered for different compositions and at different temperatures. This dataset of unprecedented size was used validate a modified version of the three-jump solute drag model for both ternary and quaternary systems. The model calculations matched experimental transformation kinetics at all investigated temperatures and over almost all the investigated composition ranges of Si, Cr, Mn, Ni, and Mo, contrary to results from para-equilibrium (PE) and local equilibrium negligible partitioning (LENP) models. Additionally, it was demonstrated that the calibration of thermodynamic parameters in ternary systems held true in quaternary systems, paving the way towards modeling of the transformation in higher-order systems

    Austenite formation in a medium-Mn steel during intercritical annealing via in situ high-energy X-ray diffraction

    No full text
    The microstructural evolution of a prototype Fe-0.15C-5.56Mn-1.1Si-1.89Al medium-Mn third-generation advanced high strength steel (3G AHSS) with a martensite-ferrite (MF) starting microstructure during intercritical annealing was determined in situ using high energy X-ray diffraction (HEXRD). Intercritical annealing was carried out at 665 °C and 710 °C for 120 s and 240 s, followed by cooling to room temperature. HEXRD data were analyzed to monitor the austenite fraction and lattice parameters throughout the thermal cycle. During isothermal holding, the austenite fraction increased, up to 31% and 45% for the samples annealed for 120 s, and up to 33% and 46% for the samples annealed for 240 s at 665 °C and 710 °C, respectively. Observed changes in lattice parameters during isothermal holding were attributed to composition changes due to the partitioning of C between austenite and ferrite. Diffusion simulations using DICTRA were used to calculate solute partitioning during intercritical annealing, providing further insights into both austenite growth and the distribution of alloying elements within the austenite

    Use of space-resolved in-situ high energy X-ray diffraction for the characterization of the compositional dependence of the austenite-to-ferrite transformation kinetics in steels

    No full text
    International audienceIn-situ high energy X-Ray diffraction (HEXRD) was used on compositionally graded steels to study the effect of substitutional elements on ferrite growth kinetics in Fe–C–X and Fe–C–X–Y systems. Two systems were selected to illustrate the applicability of the combinatorial approach in studying such transformations, Fe–C–Mn and Fe–C–Mn–Mo. Comparison between the measured ferrite growth kinetics using HEXRD and the predicted ones using Para-Equilibrium (PE) and Local Equilibrium with Negligible Partitioning (LENP) models indicates that the fractions reached at the stasis of transformation are lower than the predicted ones. Experiments indicated a deviation of measured kinetics from both PE and LENP models when increasing Mn and decreasing Mo (in Fe–C–Mn–Mo system). The large amount of data that can be obtained using this approach can be used for validating existing models describing ferrite growth kinetics

    Combinatorial approaches for the design of metallic alloys

    Get PDF
    International audienceThe design of new metallic alloys is faced with the challenge of an increasing complexity of the alloys composition, processing and resulting microstructures necessary to answer to multiple property targets, together with a requirement that the design stage be faster and less expensive. This paper shows that combinatorial methods, combining numerical and experimental approaches, can be applied to the specific requirements of alloy design and lead to improved understanding of fundamental processes of physical metallurgy, such as precipitation, together with improved alloy compositions and processing.La conception de nouveaux alliages métalliques est confrontée au défi d'une complexité croissante de leur composition, du traitement et des microstructures résultantes nécessaires pour répondre à de multiples objectifs quant à leurs propriétés, ainsi qu'à l'exigence d'une étape de conception plus rapide et moins coûteuse. Cet article montre que les méthodes combinatoires, associant des approches numériques et expérimentales, peuvent être appliquées aux exigences spécifiques de la conception des alliages et conduire à une meilleure compréhension des processus fondamentaux de la métallurgie physique, tels que la précipitation, ainsi qu'à des compositions et des traitements d'alliages améliorés

    Ferrite precipitation in quaternary Fe–C–X1–X2 systems using high-throughput approaches

    No full text
    This study investigates the effect of composition on ferrite growth kinetics in quaternary Fe–C–X1–X2 systems (X: Ni, Cr, Mo) using a high-throughput methodology. This study provides the largest dataset to date on ferrite growth kinetics in multi-component steels, offering novel insight into the behavior of these complex systems. To this end, high-energy X-ray diffraction is utilized to gather kinetic data in situ along composition gradients, leading to the measurement of phase transformation kinetics maps in compositional space. The obtained data is compared to predictions from various models describing ferrite growth kinetics in low-alloy steels. The modified "three-jump" solute drag model is shown to describe best the ferrite growth kinetics in these quaternary systems, without the need for additional calibration or fitting parameters. The success of this model is attributed to its consideration of individual solute interactions with the interface and inter-elemental interactions. The findings of this study provide valuable insight for robust modeling of phase transformations and microstructural evolution in multi-component steels, a critical tool in accelerating alloy optimization and in enhancing process control
    corecore